Как найти периметр треугольника — студенческий портал

Просто посчитайте сумму всех сторон.

Как найти периметр треугольника - Студенческий порталИллюстрация: Лайфхакер

  • P — искомый периметр;
  • a, b, c — стороны треугольника.

Сейчас читают ????

  • Загадка с подвохом: какая чашка наполнится кофе первой?

Умножьте площадь треугольника на 2.

Разделите результат на радиус вписанной окружности.

Как найти периметр треугольника - Студенческий порталИллюстрация: Лайфхакер

3. Как вычислить периметр треугольника, зная две стороны и угол между ними

Сначала найдите неизвестную сторону треугольника с помощью теоремы косинусов:

  • Умножьте одну сторону на вторую, на косинус угла между ними и на 2.
  • Посчитайте сумму квадратов известных сторон и отнимите от неё число, полученное в предыдущем действии.
  • Найдите корень из результата.

Теперь прибавьте к найденной стороне две ранее известные стороны.

Как найти периметр треугольника - Студенческий порталИллюстрация: Лайфхакер

  • P — искомый периметр;
  • b, c — известные стороны треугольника;
  • ɑ — угол между известными сторонами;
  • a — неизвестная сторона треугольника.

4. Как найти периметр равностороннего треугольника, зная одну сторону

Умножьте сторону на 3.

Как найти периметр треугольника - Студенческий порталИллюстрация: Лайфхакер

  • P — искомый периметр;
  • a — любая сторона треугольника (напомним, в равностороннем треугольнике все стороны равны).

5. Как вычислить периметр равнобедренного треугольника, зная боковую сторону и основание

Умножьте боковую сторону на 2.

Прибавьте к результату основание.

Как найти периметр треугольника - Студенческий порталИллюстрация: Лайфхакер

  • P — искомый периметр;
  • a — боковая сторона треугольника (в равнобедренном треугольнике боковые стороны равны);
  • b — основание треугольника (это сторона, которая отличается длиной от остальных).

6. Как найти периметр равнобедренного треугольника, зная боковую сторону и высоту

  • Найдите квадраты боковой стороны и высоты.
  • Отнимите от первого числа второе.
  • Найдите корень из результата и умножьте его на 2.
  • Прибавьте к полученному числу две боковые стороны.

Как найти периметр треугольника - Студенческий порталИллюстрация: Лайфхакер

  • P — искомый периметр;
  • a — боковая сторона треугольника;
  • h — высота (перпендикуляр, опущенный на основание треугольника со стороны противоположной вершины; в равнобедренном треугольнике высота делит основание пополам).

7. Как вычислить периметр прямоугольного треугольника, зная катеты

  1. Найдите квадраты катетов и посчитайте их сумму.
  2. Извлеките корень из полученного числа.
  3. Прибавьте к результату оба катета.

Как найти периметр треугольника - Студенческий порталИллюстрация: Лайфхакер

  • P — искомый периметр;
  • a, b — катеты треугольника (стороны, которые образуют прямой угол).

8. Как найти периметр прямоугольного треугольника, зная катет и гипотенузу

  • Посчитайте квадраты гипотенузы и катета.
  • Отнимите от первого числа второе.
  • Найдите корень из результата.
  • Прибавьте катет и гипотенузу.

Как найти периметр треугольника - Студенческий порталИллюстрация: Лайфхакер

  • P — искомый периметр;
  • a — любой катет прямоугольника;
  • c — гипотенуза (сторона, которая лежит напротив прямого угла).

????✏️????

Источник: https://lifehacker.ru/kak-najti-perimetr-treugolnika/

Периметр треугольника

Как найти периметр треугольника - Студенческий порталПериметром треугольника, как в прочем и любой фигуры, называется сумма длин всех сторон. Довольно часто это значение помогает найти площадь или используется для расчета других параметров фигуры.
Формула периметра треугольника выглядит так:

Как найти периметр треугольника - Студенческий портал Пример расчета периметра треугольника. Пусть дан треугольник со сторонами a = 4см, b = 6 см, c = 7 см. подставим данные в формулу: Как найти периметр треугольника - Студенческий порталсм

Формула расчета периметра равнобедренного треугольника будет выглядеть так:

Как найти периметр треугольника - Студенческий портал

Формула расчета периметра равностороннего треугольника:

Пример расчета периметра равностороннего треугольника. Когда все стороны фигуры равны, то их можно просто умножить на три. Допустим, дан правильный треугольник со стороной 5 см в таком случае: см

В общем, когда все стороны даны, найти периметр довольно просто. В остальных же ситуациях требуется найти размер недостающей стороны. В прямоугольном треугольнике можно найти третью сторону по теореме Пифагора.

К примеру, если известны длины катетов, то можно найти гипотенузу по формуле: Как найти периметр треугольника - Студенческий портал

Рассмотрим пример расчета периметра равнобедренного треугольника при условии, что мы знаем длину катетов в прямоугольном равнобедренном треугольнике.
Дан треугольник с катетами a=b=5 см. Найти периметр. Для начала найдем недостающую сторону с. Как найти периметр треугольника - Студенческий порталсм
Теперь посчитаем периметр: Как найти периметр треугольника - Студенческий порталсм
Периметр прямоугольного равнобедренного треугольника будет равен 17 см.
Как найти периметр треугольника - Студенческий портал

    Если эти выражения подставить в формулу периметра, можно получить:

    Задача: Дан прямоугольный треугольник с гипотенузой с = 7 см и острым углом α = 30°. Найти периметр треугольника. Подставляем значения в формулу.
    см
    Периметр треугольника равен 16,45 см
    Зная одну сторону и противолежащий ей катет можно вычислить две недостающие.
    К примеру, дан треугольник, в котором сторона a = 5 см, а противолежащий ей угол α =45°. Тогда сторону b можно найти через формулу:
    Сторону с найдем так:
    Периметр, с применением таких формул, будет рассчитываться следующим образом:
    Теперь произведем расчеты по уже известной формуле: см

Источник: https://2mb.ru/matematika/geometriya/perimetr-treugolnika/

Периметр треугольника

  • Так как изначально периметр для любой фигуры – это сумма длин всех ее сторон, то периметр треугольника найти проще всего, зная все три стороны: P=a+b+c. Для равнобедренного треугольника формула периметра будет выглядеть несколько иначе в силу того, что две из сторон у него конгруэнтны, то есть равны по значению: P=2a+b. С равносторонним треугольником все еще незатейливей – у него все три стороны одинаковые, поэтому периметр будет равен утроенной стороне: P=3a.

    Для треугольников, обладающих особыми свойствами, как например, вышеупомянутые равнобедренный и равносторонний треугольники, могут быть выведены и другие формулы. Например, периметр равнобедренного треугольника можно найти и через высоту. Высота в данном случае делит основание пополам, исходя из чего можно найти неизвестную сторону по теореме Пифагора из получившихся прямоугольных треугольников. Если дана боковая сторона, то половина основания будет равна , а само основание, соответственно, . Подставив его в формулу для нахождения периметра равнобедренного треугольника, получим Как найти периметр треугольника - Студенческий портал. Если дано основание, то по той же теореме Пифагора находим боковую сторону Как найти периметр треугольника - Студенческий портал. Формула периметра равнобедренного треугольника через основание и высоту тогда принимает вид Как найти периметр треугольника - Студенческий портал.

    Найти периметр равностороннего треугольника становится возможным, уже зная одну лишь высоту. Используя теорему Пифагора, выражаем сторону треугольника через высоту Как найти периметр треугольника - Студенческий портал. Подставляем в формулу периметра равностороннего треугольника и получаем Как найти периметр треугольника - Студенческий портал

    Периметр прямоугольного треугольника можно найти, зная две стороны из трех. Если известны два катета a и b, то гипотенуза c по теореме Пифагора равна , и периметр получается Как найти периметр треугольника - Студенческий портал. Если дана гипотенуза и один из катетов, формула периметра прямоугольного треугольника принимает уже другой вид: Как найти периметр треугольника - Студенческий портал

Источник: https://geleot.ru/education/math/geometry/perimeter/triangle

Как найти периметр треугольника с прямым углом. Как найти периметр треугольника если известны не все стороны

Периметр – это величина, подразумевающая длину всех сторон плоской (двумерной) геометрической фигуры. Для разных геометрических фигур существуют разные способы нахождения периметра.

В данной статье вы узнаете как находить периметр фигуры разными способами, в зависимости от известных его граней.

Возможные методы:

  • известны все три стороны равнобедренного или любого другого треугольника;
  • как найти периметр прямоугольного треугольника при двух известных его гранях;
  • известны две грани и угол, который расположен между ними (формула косинусов) без средней линии и высоты.

Первый метод: известны все стороны фигуры

Как найти периметр треугольника - Студенческий порталКак находить периметра треугольника, когда известны все три грани
, необходимо использовать следующую формулу: P = a + b + c, где a,b,c – известные длины всех сторон треугольника, P – периметр фигуры.

Например, известны три стороны фигуры: a = 24 см, b = 24 см, c = 24 см. Это правильная равнобедренная фигура, чтобы вычислить периметр пользуемся формулой: P = 24 + 24 + 24 = 72 см.

Данная формула подходит к любому треугольнику
, необходимо просто знать длины всех его сторон. Если хотя бы одна из них неизвестна, необходимо воспользоваться другими способами, о которых мы поговорим ниже.

Еще один пример: a = 15 см, б = 13 см, c = 17 см. Вычисляем периметр: P = 15 + 13 + 17 = 45 см.

Очень важно помечать единицу измерения в полученном ответе. В наших примерах длины сторон указаны в сантиметрах (см), однако, существуют разные задачи, в условиях которых присутствуют другие единицы измерения.

Второй метод: прямоугольный треугольник и две известные его стороны

Как найти периметр треугольника - Студенческий портал

Описывает соотношение между гранями прямоугольного треугольника. Формула, описываемая этой теоремой, является одной из самых известных и наиболее часто применяемых теорем в геометрии. Итак, сама теорема:

Стороны любого прямоугольного треугольника описываются таким уравнением: a^2 + b^2 = c^2, где а и b – катеты фигуры, а c – гипотенуза.

  • Гипотенуза
    . Она всегда расположена противоположно прямому углу (90 градусов), а также является самой длинной гранью треугольника. В математике принято обозначать гипотенузу буквой c.
  • Катеты
    – это грани прямоугольного треугольника, которые относятся к прямому углу и обозначаются буквами а и b. Один из катетов одновременно является и высотой фигуры.

Таким образом, если условиями задачи заданы длины двух из трех граней такой геометрической фигуры, с помощью теоремы Пифагора необходима найти размерность третьей грани, после чего воспользоваться формулой из первого метода.

Например, мы знаем длину 2-х катетов: a = 3 см, b = 5 см. Подставляем значения в теорему: 3^2 + 4^2 = c^2 => 9 + 16 = c^2 => 25 = c^2 => c = 5 см. Итак, гипотенуза такого треугольника равна 5 см. К слову, данный пример является самым распространенным и называется . Иными словами, если два катета фигуры равны 3 см и 4 см, то гипотенуза составит 5 см соответственно.

Если неизвестна длина одного из катетов, необходимо преобразовать формулу следующим образом: c^2 – a^2 = b^2. И наоборот для другого катета.

Продолжим пример. Теперь необходимо обратиться к стандартной формуле поиска периметра фигуры: P = a + b + c. В нашем случае: P = 3 + 4 + 5 = 12 см.

Третий метод: по двум граням и углу между ними

В старшей школе, а также университете, чаще всего приходится обращаться именно к данному способу нахождения периметра. Если условиями задачи заданы длины двух сторон, а также размерность угла между ними, то необходимо воспользоваться теоремой косинусов
.

Данная теорема применима абсолютно к любому треугольнику, что и делает ее одной из наиболее полезных в геометрии. Сама теорема выглядит следующим образом: c^2 = a^2 + b^2 – (2 * a * b * cos(C)), где a,b,c – стандартно длины граней, а A,B и С – это углы, которые лежат напротив соответствующих граней треугольника. То есть, A – угол, противолежащий стороне a и так далее.

Представим, что описан треугольник, стороны а и б которого составляют 100 см и 120 см соответственно, а угол, лежащий между ними, составляет 97 градусов. То есть а = 100 см, б = 120 см, C = 97 градусов.

Все, что нужно сделать в данном случае – это подставить все известные значения в теорему косинусов.

Длины известных граней возводятся в квадрат, после чего известные стороны перемножаются между друг другом и на два и умножаются на косинус угла между ними.

Далее, необходимо сложить квадраты граней и отнять от них второе полученное значение. Из итоговой величины извлекается квадратный корень – это будет третья, неизвестная до этого сторона.

После того как все три грани фигуры известны, осталось воспользоваться уже полюбившейся нам стандартной формулой поиска периметра описываемой фигуры из первого метода.

Прямоугольный треугольник — это частный вид произвольного треугольника. Как и любой другой треугольник он имеет три стороны, но один из его углов обязательно должен составлять 90 градусов.

Ка только вы определили, что заданный треугольник является прямоугольным, можно приступить к нахождению его основных величин.

Одной из характеристик прямоугольного треугольника является его периметр. Нахождению периметра прямоугольного треугольника посвящено много задач по геометрии. Перед тем как мы рассмотрим основные способы нахождения периметра прямоугольного треугольника, хотелось бы напомнить, что периметр любой геометрической фигуры на плоскости равен сумме длин все ее сторон.

Для все видов треугольников данное утверждение можно записать в виде следующего выражения:

где P — периметр треугольника; a, b, c — стороны треугольника.

В прямоугольном треугольнике, как уже было сказано выше присутствует отличительная особенность в виде одного из углов, составляющего 90 градусов. Две стороны треугольника, прилегающие к данному углу называют катетами. Противоположную прямому углу сторону принято называть гипотенузой.

Необычные свойства прямоугольного треугольника было открыто Пифагором, который обнаружил, что квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов, что может быть записано в виде выражения:

Прямоугольный треугольник — это частный вид произвольного треугольника. Как и любой другой треугольник он имеет три стороны, но один из его углов обязательно должен составлять 90 градусов.

Ка только вы определили, что заданный треугольник является прямоугольным, можно приступить к нахождению его основных величин.

Одной из характеристик прямоугольного треугольника является его периметр. Нахождению периметра прямоугольного треугольника посвящено много задач по геометрии.

  • Где P — периметр треугольника;
  • A, b, c — стороны треугольника.
  • Исходя из теоремы Пифагора появилась возможность определять периметр прямоугольного треугольника по его двум любым сторонам известной длины. Если известны длины катетов, то периметр треугольника определяется через нахождение величины гипотенузы по формуле:
  • Если известен только один из катетов и длина гипотенузы, то периметр треугольника определяется через нахождение величины недостающего катета по формуле:
  • Если в прямоугольном треугольнике известна только длина гипотенузы с и один из прилегающих к ней острых углов α, то периметр треугольника в данном случае может быть определен по формуле:
  • В том случае, когда условиями задачи задана длина катета a и величина противолежащего ему острого угла α, то периметр прямоугольного треугольника в данном случае вычисляется по формуле:
  • Если же задан катет a с прилежащим к нему углом β, то периметр треугольника может быть рассчитан на основе выражения:

  1. P = a + b + c, где, допустим,
  2. P = v(a2 + b2) + a + b, или
  3. P = v(c2 – b2) + b + с.

P = (1 + sin? + cos?)*с.

P = a*(1/tg? + 1/sin? + 1)

P = a*(1/сtg? + 1/cos? + 1)

Другие новости по теме:

Как найти периметр прямоугольного треугольника

Прямоугольным треугольником считается такой треугольник, один из углов которого равен 90 градусам, а два других являются острыми углами. Расчет периметра такого треугольника будет зависим от количества известных о нем данных.

  • В зависимости от случая, знание двух из трех сторон треугольника, а также одного из его острых углов.
  • Спонсор размещения P&G Статьи по теме «Как найти периметр прямоугольного треугольника» Как найти площадь поверхности пирамиды Как найти периметр если известна площадь Как найти периметр равностороннего треугольника
  • Способ 1.Если известны все три стороны треугольника, то, независимо от того, прямоугольный ли треугольник или нет, его периметр будет рассчитан так:
  • P = a + b + c, где, допустим,
  • Способ 2. Если в прямоугольнике известны только 2 стороны, то, используя теорему Пифагора, периметр этого треугольника можно рассчитать по формуле:
  • P = v(a2 + b2) + a + b, или
  • P = v(c2 – b2) + b + с.

Способ 3. Пусть в прямоугольном треугольнике даны гипотенуза c и острый угол?, то найти периметр можно будет таким образом:

P = (1 + sin? + cos?)*с.

Способ 4. Дано, что в прямоугольном треугольнике длина одного из катета равна a, а напротив него лежит острый угол?. Тогда расчет периметра этого треугольника будет вестись по формуле:

P = a*(1/tg? + 1/sin? + 1)

Способ 5. Пускай нам известен катет a и прилежащий к нему угол?, тогда периметр будет рассчитан так:

P = a*(1/сtg? + 1/cos? + 1)

Другие новости по теме:

Площадь и периметр — основные числовые характеристики любых геометрических фигур. Нахождение этих величин упрощается благодаря общепринятым формулам, согласно которым можно также вычислить одно через другое с минимумом или полным отсутствием дополнительных начальных данных. Спонсор размещения P&G

Равносторонний треугольник наряду с квадратом является, пожалуй, самой простой и симметричной фигурой в планиметрии. Разумеется, все соотношения, справедливые для обычного треугольника, верны также и для равностороннего. Однако для правильного треугольника все формулы становятся намного проще. Вам

Периметр треугольника, как и любой другой плоской геометрической фигуры, составляет сумма длин ограничивающих его отрезков. Поэтому, чтобы вычислить длину периметра, надо знать длины его сторон. Но в силу того, что длины сторон в геометрических фигурах связаны определенными соотношениями с

Прямоугольным считается такой треугольник, у которого один из углов прямой. Сторона треугольника, расположенная напротив прямого угла, называется гипотенузой, а две другие стороны — катетами. Чтобы найти длины сторон прямоугольного треугольника, можно воспользоваться несколькими способами. Спонсор

Периметр любой геометрической фигуры, в том числе треугольника, равен совокупной длине границ этой фигуры. Он обозначается заглавной латинской буквой P и легко находится методом сложения длин всех сторон данной фигуры. Спонсор размещения P&G Статьи по теме «Как вычислить периметр треугольника»

Треугольник — это многоугольник, имеющий три стороны и три угла. Как же вычислить его периметр? Спонсор размещения P&G Статьи по теме «Как находить периметр треугольника» Как найти периметр треугольника, заданного координатами своих вершин Как найти площадь треугольника Как найти длину и ширину

Гипотенуза – самая длинная сторона прямоугольного треугольника. Она расположена противоположно прямому углу. Способ нахождения гипотенузы прямоугольного треугольника зависит от того, какими исходными данными вы обладаете. Спонсор размещения P&G Статьи по теме «Как найти гипотенузу треугольника» Как

Прямоугольный треугольник характеризуется определенными соотношениями между углами и сторонами. Зная значения одних из них, можно вычислять другие. Для этого используются формулы, основанные, в свою очередь, на аксиомах и теоремах геометрии. Спонсор размещения P&G Статьи по теме «Как определить

Казалось бы, что может быть проще, чем вычисление площади и периметра треугольника – измерил стороны, поставил цифры в формулу – и все. Если вы так считаете, значит, забыли, что для этих целей существует не две простенькие формулы, а гораздо больше – для каждого вида треугольника – своя. Вам

Периметр треугольника – сумма длин его сторон. Найти периметр треугольника часто требуется как в задачах начальной геометрии, так и в более трудных заданиях. При их решении недостающие величины находят из других данных. Основные зависимости периметра треугольника от его других измерений отражены в

Как найти периметр треугольника - Студенческий портал

Одной из базовых геометрических фигур является треугольник. Он образуется при пересечении трех отрезков прямых. Данные отрезки прямых формируют стороны фигуры, а точки их пересечения называются вершинами.

Каждый школьник, изучающий курс геометрии, обязан уметь находить периметр этой фигуры.

Полученное умение будет полезным для многих и во взрослой жизни, к примеру, пригодится студенту, инженеру, строителю,

Существуют разные способы найти периметр треугольника. Выбор необходимой для вас формулы зависит от имеющихся исходных данных. Чтобы записать данную величину в математической терминологии используют специальное обозначение – Р. Рассмотрим, что такое периметр, основные способы его расчета для треугольных фигур разных видов.

Самым простым способом найти периметр фигуры, если есть данные всех сторон. В этом случае используется следующая формула:

Буквой «P» обозначается сама величина периметра. В свою очередь «a», «b» и «c» – это длины сторон.

Зная размер трех величин, достаточно будет получить их сумму, которая и является периметром.

Альтернативный вариант

В математических задачах все данные длины редко бывают известны. В таких случаях рекомендуется воспользоваться альтернативным способом поиска нужной величины. Когда в условиях указана длина двух прямых, а также угол, находящийся между ними, расчет производится через поиск третьей. Для поиска этого числа необходимо добыть квадратный корень по формуле:

Как найти периметр треугольника - Студенческий портал

Периметр по двум сторонам

Для расчета периметра не обязательно знать все данные геометрической фигуры. Рассмотрим способы расчета по двум сторонам.

Равнобедренный треугольник

Равнобедренным называется такой треугольник, не меньше двух сторон которого имеют одинаковую длину. Они называются боковыми, а третья сторона – основанием. Равные прямые образовывают вершинный угол.

Особенностью в равнобедренном треугольникеявляется наличие одной оси симметрии. Ось – вертикальная линия, выходящая из вершинного угла и заканчивающаяся посредине основания.

По своей сути ось симметрии включает в себя такие понятия:

  • биссектриса вершинного угла;
  • медиана к основанию;
  • высота треугольника;
  • срединный перпендикуляр.

Чтобы определить периметр равнобедренного вида треугольной фигуры, воспользуйтесь формулой.

В данном случае вам необходимо знать только две величины: основание и длину одной стороны. Обозначение «2а» подразумевает умножение длины боковой стороны на 2. К полученной цифре нужно добавить величину основания – «b».

В исключительном случае, когда длина основания равнобедренного треугольника равна его боковой прямой, можно воспользоваться более простым способом. Он выражается в следующей формуле:

Для получения результата достаточно умножить это число на три. Эта формула используется для того, чтобы найти периметр правильного треугольника.

Источник: https://mywordworld.ru/sochineniya/kak-naiti-perimetr-treugolnika-s-pryamym-uglom-kak-naiti-perimetr-treugolnika-esli-izvestny-ne-vse/

Как найти периметр треугольника: решение задачи по 2 сторонам, средней линии и известной высоте

Одной из базовых геометрических фигур является треугольник. Он образуется при пересечении трех отрезков прямых. Данные отрезки прямых формируют стороны фигуры, а точки их пересечения называются вершинами.

Каждый школьник, изучающий курс геометрии, обязан уметь находить периметр этой фигуры. Полученное умение будет полезным для многих и во взрослой жизни, к примеру, пригодится студенту, инженеру, строителю, дизайнеру.

Существуют разные способы найти периметр треугольника. Выбор необходимой для вас формулы зависит от имеющихся исходных данных. Чтобы записать данную величину в математической терминологии используют специальное обозначение – Р. Рассмотрим, что такое периметр, основные способы его расчета для треугольных фигур разных видов.

Классическая формула

Самым простым способом найти периметр фигуры, если есть данные всех сторон. В этом случае используется следующая формула:

P = a + b + c.

Буквой «P» обозначается сама величина периметра. В свою очередь «a», «b» и «c» – это длины сторон.

Зная размер трех величин, достаточно будет получить их сумму, которая и является периметром.

Это интересно! Что значит вертикально и как выглядит вертикальная линия

Альтернативный вариант

В математических задачах все данные длины редко бывают известны. В таких случаях рекомендуется воспользоваться альтернативным способом поиска нужной величины. Когда в условиях указана длина двух прямых, а также угол, находящийся между ними, расчет производится через поиск третьей. Для поиска этого числа необходимо добыть квадратный корень по формуле:

  • .
  • Далее рассчитывайте Р по такой формуле:
  • .

Периметр по двум сторонам

Для расчета периметра не обязательно знать все данные геометрической фигуры. Рассмотрим способы расчета по двум сторонам.

Это интересно! Основы геометрии: что это такое биссектриса треугольника

Равнобедренный треугольник

Равнобедренным называется такой треугольник, не меньше двух сторон которого имеют одинаковую длину. Они называются боковыми, а третья сторона – основанием. Равные прямые образовывают вершинный угол.

Особенностью в равнобедренном треугольникеявляется наличие одной оси симметрии. Ось – вертикальная линия, выходящая из вершинного угла и заканчивающаяся посредине основания.

По своей сути ось симметрии включает в себя такие понятия:

  • биссектриса вершинного угла;
  • медиана к основанию;
  • высота треугольника;
  • срединный перпендикуляр.

Чтобы определить периметр равнобедренного вида треугольной фигуры, воспользуйтесь формулой.

P = 2a + b.

В данном случае вам необходимо знать только две величины: основание и длину одной стороны. Обозначение «2а» подразумевает умножение длины боковой стороны на 2. К полученной цифре нужно добавить величину основания – «b».

В исключительном случае, когда длина основания равнобедренного треугольника равна его боковой прямой, можно воспользоваться более простым способом. Он выражается в следующей формуле:

P = 3a.

Для получения результата достаточно умножить это число на три. Эта формула используется для того, чтобы найти периметр правильного треугольника.

Это интересно! Изучаем символы: как обозначается в математике площадь

Источник: https://znaniya.guru/matematika/perimetr-treugolnika.html

Как находить периметр треугольника

В статье на примерах покажем, как находить периметр треугольника. Рассмотрим все основные случая, как найти периметры треугольников, даже когда не все значения сторон известны.

Треугольником называется простая геометрическая фигура состоящая из трех прямых линий пересекающих друг друга. В которой точки пересечения прямых, называются вершинами, а прямые линии соединяющие их, называются сторонами.

Периметром треугольника называется сумма длин сторон треугольника. От того сколько мы имеем изначальных данных, для вычисления периметра треугольника, зависит каким из вариантов мы воспользуемся, для его вычисления.

Первый вариант

Если мы знаем длины сторон n, y и z треугольника, то периметр мы можем определить с помощью следующей формулы: в которой P — это периметр, n, y, z- стороны треугольника

периметр прямоугольника формула P = n + y + z Рассмотрим на примере:
Дан треугольник ksv стороны которого k = 10см, s = 10 см, v =8см. найти его периметр.
Пользуясь формулой получаем 10 + 10 + 8 = 28.

Ответ: Р = 28см.

Для равностороннего треугольника находим периметр так — длина одной стороны умноженная на три. формула выглядит следующим образом :
Р = 3n
Рассмотрим на примере:
Дан треугольник ksv стороны которого k = 10см, s = 10 см, v =10см. найти его периметр.
Пользуясь формулой получаем 10 * 3 = 30

  • Ответ: Р = 30см.
  • Для равнобедренного треугольника находим периметр так — к длине одной боковой стороны умноженной на два, прибавляем сторону основания
    Равнобедренным треугольником называется простейший многоугольник у которого две боковые стороны равны, а третья сторона называется основанием.

Рассмотрим на примере: Дан треугольник ksv стороны которого k = 10см, s = 10 см, v =7см. найти его периметр.
Пользуясь формулой получаем 2 * 10 + 7 = 27.
Ответ: Р = 27см.
Второй вариант

Когда нам не известна длина одной стороны, но мы знаем величины длины двух других сторон и угла между ними, а периметр треугольника возможно найти только после того как мы узнаем длину третьей стороны. В этом случае неизвестная сторона будет равна корню квадратному из выражения в2 + с2 — 2 ∙ в ∙ с ∙ cosβ

  1. P = n + y + √ ( n2 + y2 — 2 ∙ n ∙ y ∙ cos α )
    n, y — длины сторон
  2. α — размер угла между известными нам сторонами
  3. Третий вариант
    Когда нам не известны стороны n и y, но мы знаем длину стороны z и величины прилегающих к ней. Периметр треугольника в этом случае мы сможем найти только тогда когда узнаем длины двух неизвестных нам сторон, определим их с помощью теоремы синусов, с помощью формулы
  • P = z + sinα ∙ z / (sin ( 180°-α — β )) + sinβ ∙ z / (sin ( 180°-α — β )) z — длина известной нам стороны α, β — размеры известных нам углов
  • Четвертый вариант
    Так же можно найти периметр треугольника по радиусу вписанному в его окружность и площади треугольника. Определяем периметр по формуле
  1. P = 2S / r S — площадь треугольника
  2. r — радиус вписанной в него окружности

Мы с вами разобрали четыре разных варианта, как можно найти периметр треугольника.
Находить периметр треугольника в принципе не сложно. Если у вас появились какие то вопросы по статье, дополнения, то обязательно пишите их в х.

Кстати, на referatplus.ru вы можете скачать рефераты по математике бесплатно.

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Источник: https://reshit.ru/Kak_nahodit%27_perimetr_treugol%27nika

Ссылка на основную публикацию