Механика: механические колебания и волны, звук

Здравствуйте! Наш завершает тему «Механические колебания и волны», поэтому он будет посвящен контрольной работе. Наша контрольная работа так и называется «Механические колебания и волны. Звук». Мы рассмотрим различные задачи, посвященные этой теме. Первая задача, которую будем рассматривать, посвящена колебаниям обыкновенного нитяного маятника, звучит она следующим образом.Механика. Механические колебания и волны, звук - Студенческий портал

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

Задача 1

По представленному графику определите амплитуду и период колебаний нитяного маятника.

  • Решение:
  • Механика. Механические колебания и волны, звук - Студенческий портал
  • Механика. Механические колебания и волны, звук - Студенческий портал
  • Ответ: 
  • А = 10-2 м, Т = 1 с.

Мне бы хотелось отметить, что такого рода задачи часто встречаются в контрольных работах. Именно по графику определить характеристики колебаний. Давайте обратимся к записи, посмотрим на график и ответим на поставленный вопрос.

Итак, в данном случае график представлен на рисунке и выглядит он следующим образом. Сначала мы должны отметить точку равновесия. В данной точке тело когда находилось, оно находилось в положении равновесия. Дальше начинается движение маятника. С течением времени у нас смещение произошло сначала в одну сторону, затем в другую.

Таким образом, мы представляем себе движение маятника в сочетании с осью времени. Мы знаем, что амплитудой является максимальное смещение от положения равновесия. Посмотрите, в данном случае смещение произошло на 1, на 1 в одну сторону относительно положения равновесия.

И относительно положения равновесия в другую сторону тоже на 1. Если вы посмотрите, то смещение, обозначенное буквой х, измеряется в сантиметрах. По всему представленному графику смещение в данном случае максимальное постоянно, равно 1, т.е. 1 см. Это и есть амплитуда колебаний.

Обратите внимание: необходимо сразу записать, что А = 1 см, или в системе интернациональной А = 1 см = 10-2 м.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Великая греческая колонизация - причины начала и подробное описание процесса

Оценим за полчаса!

Механика. Механические колебания и волны, звук - Студенческий портал

Обязательно необходимо записать ответ этой задачи. Ответ: А = 10-2 м, Т = 1 с.

Следующая задача, которую мы будем разбирать, – задача, посвященная колебаниям пружинного маятника. Звучит текст этой задачи следующим образом.

Задача 2

Пружинный маятник совершил за 4 с 16 полных колебаний. Необходимо определить период и частоту колебаний этого маятника.

Давайте посмотрим на краткую запись этой задачи и рассмотрим ее решение. Посмотрите, краткое условие следующее.

Дано:  Решение:
N =16 Механика. Механические колебания и волны, звук - Студенческий портал Механика. Механические колебания и волны, звук - Студенческий портал Ответ: Т = 0,25 с, ν = 4 Гц.
t = 4 c
  1. Найти:
  2. n — ?
  3. T — ?

Механика. Механические колебания и волны, звук - Студенческий портал Механика. Механические колебания и волны, звук - Студенческий портал

Обязательно надо сказать об ответе. Ответ: Т = 0,25 с, ν = 4 Гц.

Здесь мне бы хотелось обратить внимание на одну особенность, соответствующую механическим колебаниям. В данном случае получается довольно любопытная ситуация, что если мы частоту умножим на период, то получим 1. Обратите внимание на то, что для механических колебаний это довольно характерная особенность.

Следующая задача, которую мы рассмотрим, будет посвящена волнам. В данном случае условие задачи звучит следующим образом.

Задача 3

Длина океанической волны составляет 270 м, период составляет 13,5 с. Определите скорость распространения волн.

Такая задача, связанная с механическими волнами, в частности, с волнами океаническими. Давайте посмотрим на запись и на ее решение. Она тоже не будет представлять собой какой-либо сложности. Конечно, при условии, что мы помним уравнение для вычисления указанных величин. Итак, посмотрите.

Дано: Решение:
l = 270 м Механика. Механические колебания и волны, звук - Студенческий портал Ответ: .
Т = 13,5 с
Найти: V = ?

Механика. Механические колебания и волны, звук - Студенческий портал

Следующая задача, которую мы рассмотрим, относится к звуковым волнам. Текст задачи звучит следующим образом.

Задача 4

Определите, во сколько раз будет отличаться длина звуковой волны при переходе из воздуха в воду. Считать, что скорость распространения звука в воздухе 340 м/с, в воде 1450 м/с.

Давайте посмотрим на краткую запись и на решение задачи. Посмотрите, в данном случае условие небольшое.

Дано: Решение:
  • ν1 =  ν2
  • Т1 = Т2
  • ;
  • Ответ:
  • n ≈ 4,3 раза.
Найти: 

Определить нам надо, во сколько раз изменилась длина волны при переходе. Надо разделить длину волны в воде к длине волны в воздухе. Итак, что предпримем? Обращаю внимание, что здесь после слова «решение» написано достаточно важное выражение ν1 = ν2.

Когда мы обсуждали это явление, мы говорили, что волна переходит из одной среды в другую, но при этом сохраняется частота колебаний. Меняется, скорость меняется, длина волны меняется, а частота колебания частиц остается прежней.

Посмотрите, в данном случае мы записываем, что частота колебаний частиц волны в воздухе ν1 = ν2 частоте колебаний частиц, которые составляют волну в воде. Обратите внимание: если частоты равны, то будут равны и периоды колебаний этих частиц ν1 = ν2 Þ Т1 = Т2.

Дальше, мы используем уравнение, которое нам встречалось в предыдущей задаче

l= V * Т. Записываем длину волны для воздуха l1 = V1 * Т и для воды l2 = V2 * Т. Почему в данном случае мы обозначили период Т и Т, т.е. без индексов? Разговор идет о том, что периоды у нас одинаковые, поэтому мы их обозначили одной величиной, одной буквой. Теперь разделим .

В этом случае период колебаний сократится, и мы получаем значение отношения длин волн .

Мы обозначили это отношение буквой n и в ответе записываем следующее, что n≈4,3 раза. Во столько будет отличаться длина волны.

Следующая задача, которую мы рассмотрим, будет посвящена также звуку, и мы должны обязательно рассмотреть вопрос, связанный с эхом. Итак, условия задачи следующие.

Задача 5

В результате выстрела было услышано эхо через 20 с после произведенного выстрела. Определите расстояние до преграды, если скорость звука составляла .

В данной задаче мы должны учесть, что эхо – это отраженная волна, значит, звук дошел до преграды и вернулся обратно к наблюдателю, т.е. как раз в то место, где и был произведен выстрел. Итак, давайте посмотрим на решение задачи.

Посмотрите, пожалуйста, мы запишем, что время от момента выстрела до того момента, когда было услышано эхо, 20 с. Скорость звука составляло. Определить надо расстояние S до преграды.

Дано: Решение:
t = 20 c
  1.   S1 = V * t;
  2. Ответ:
  3. S=3400 м = 3,4 км.
Найти:  S — ?

Давайте определимся с тем, что именно за это время, за 20 с, волна прошла определенное расстояние. Это расстояние мы определим простым способом: как расстояние, пройденное телом за определенное время с постоянной скоростью.

В данном случае у нас волна, поэтому мы определяем S1 = V * t, полное расстояние, прошедшее волной. Теперь мы должны отметить то, что это расстояние мы должны разделить обязательно пополам, . Почему? Дело в том, что эхо – это отраженная волна.

Значит, волна звуковая дошла до преграды и вернулась обратно, следовательно, . Теперь подставив сюда значение для вычисления , мы получаем расстояние до преграды .

Ответ, который мы здесь запишем: S=3400 м = 3,4 км. Расстояние достаточно большое, но выстрел – это достаточно громкий звук, и интенсивности его хватит, чтобы дойти до преграды и вернуться обратно.

В заключение контрольной работы мы рассмотрим задачу из ЕГЭ. Условие будет таким. Указан маятник, который совершает колебания между точками 1 и 3, как показано на рисунке.

Надо определить, в каких точках кинетическая энергия маятника является минимальной. Обращаю ваше внимание, что эта задача связана с превращением энергии при колебательных процессах. Такая задача и выбирается в ЕГЭ.

Давайте посмотрим на это условие и решим эту задачу.

  • Задача 6
  • В каких точках кинетическая энергия маятника является минимальной?
  • Рисунок

1. В точках 1 и 2.

2. В точках 1 и 3.

3. В точках 2 и 3.

4. Во всех точках одинаково.

Ответ: пункт 2.

Во-первых, нам надо рассмотреть сам рисунок. Представленный рисунок указывает цифру 2 – это положение равновесия нитяного маятника. И две крайних точки, точка 1 и 3. В условии задачи сказано, что именно между точками 1 и 3 совершаются колебания маятника. Дальше представлены 4 ответа. В каждом – определенный вид ответа, нам надо выбрать правильный. Давайте обсудим это решение.

Кинетическая энергия – это энергия движения. Стало быть, это энергия тела в тот момент, когда тело обладает скоростью. В данном случае тело в точке 1 и в точке 3 на некоторую долю секунды замирает и обладает только потенциальной энергией относительно выбранной системы отсчета. Так что в точке 1 и 3 кинетическая энергия будет минимальна, т.е. она будет равна 0.

Мы должны выбрать ответ из указанных, там, где именно эти цифры. Посмотрите, в первом ответе говорится точка 1 и 2, вторая точка в данном случае не подходит. Второй ответ: в точках 1 и 3. Соответствует правильному ответу. Ответ так и надо записать: пункт 2. Если мы посмотрим в пункт 3, там указывается точка 2 и 3, и в последнем, четвертом, говорится, что везде энергия одинакова.

Конечно, эти ответы являются в данном случае неправильными.

Итак, мы рассмотрели контрольную работу, вариант контрольной работы, и следующий урок будет посвящен новой теме – электромагнитным явлениям. Тема закончена. До свидания.

Источник: https://interneturok.ru/lesson/physics/9-klass/mehanicheskie-kolebaniya-i-volny/reshenie-zadach-po-teme-mehanicheskie-kolebaniya-i-volny-zvuk

Самая удобная и увлекательная подготовка к ЕГЭ

Часть механики, в которой изучают движение, не рассматривая причины, вызывающие тот или иной характер движения, называют кинематикой.
Механическим движением называют изменение положения тела относительно других тел
Системой отсчёта называют тело отсчёта, связанную с ним систему координат и часы.

Телом отсчёта называют тело, относительно которого рассматривают положение других тел.
Материальной точкой называют тело, размерами которого в данной задаче можно пренебречь.
Траекторией называют мысленную линию, которую при своём движении описывает материальная точка.

По форме траектории движение делится на:

а) прямолинейное — траектория представляет собой отрезок прямой;

б) криволинейное — траектория представляет собой отрезок кривой.
Путь — это длина траектории, которую описывает материальная точка за данный промежуток времени. Это скалярная величина.
Перемещение — это вектор, соединяющий начальное положение материальной точки с её конечным положением (см. рис.).

Механика. Механические колебания и волны, звук - Студенческий портал

Очень важно понимать, чем путь отличается от перемещения. Самое главной отличие в том, что перемещение — это вектор с началом в точке отправления и с концом в точке назначения (при этом абсолютно неважно, каким маршрутом это перемещение совершалось). А путь — это, наборот, скалярная величина, отражающая длину пройденной траектории.

Равномерным прямолинейным движением называют движение, при котором материальная точка за любые равные промежутки времени совершает одинаковые перемещения
Скоростью равномерного прямолинейного движения называют отношение перемещения ко времени, за которое это перемещение произошло:

Читайте также:  Жан-Жак Руссо и его философия - полный список работ и становление философской системы

Механика. Механические колебания и волны, звук - Студенческий портал

Для неравномерного движения пользуются понятием средней скорости. Часто вводят среднюю скорость как скалярную величину. Это скорость такого равномерного движения, при котором тело проходит тот же путь за то же время, что и при неравномерном движении:

Мгновенной скоростью называют скорость тела в данной точке траектории или в данный момент времени.

Равноускоренное прямолинейное движение — это прямолинейное движение, при котором мгновенная скорость за любые равные промежутки времени изменяется на одну и ту же величину Ускорением называют отношение изменения мгновенной скорости тела ко времени, за которое это изменение произошло:

Механика. Механические колебания и волны, звук - Студенческий портал

Зависимость координаты тела от времени в равномерном прямолинейном движении имеет вид: x = x0 + Vxt, где x0 — начальная координата тела, Vx — скорость движения.
Свободным падением называют равноускоренное движение с постоянным ускорением g = 9,8 м/с2, не зависящим от массы падающего тела. Оно происходит только под действием силы тяжести.

Механика. Механические колебания и волны, звук - Студенческий порталМеханика. Механические колебания и волны, звук - Студенческий портал

Одним из видов движения материальной точки является движение по окружности. При таком движении скорость тела направлена по касательной, проведённой к окружности в той точке, где находится тело (линейная скорость). Описывать положение тела на окружности можно с помощью радиуса, проведённого из центра окружности к телу.

Перемещение тела при движении по окружности описывается поворотом радиуса окружности, соединяющего центр окружности с телом. Отношение угла поворота радиуса к промежутку времени, в течение которого этот поворот произошёл, характеризует быстроту перемещения тела по окружности и носит название угловой скорости
ω
:
Механика. Механические колебания и волны, звук - Студенческий портал
Угловая скорость связана с линейной скоростью соотношением

Механика. Механические колебания и волны, звук - Студенческий портал где r — радиус окружности.

Время, за которое тело описывает полный оборот, называется периодом обращения. Величина, обратная периоду — частота обращения — ν

Механика. Механические колебания и волны, звук - Студенческий портал

Поскольку при равномерном движении по окружности модуль скорости не меняется, но меняется направление скорости, при таком движении существует ускорение. Его называют центростремительным ускорением, оно направлено по радиусу к центру окружности:

Механика. Механические колебания и волны, звук - Студенческий портал

Основные понятия и законы динамики

Часть механики, изучающая причины, вызвавшие ускорение тел, называется динамикой

Первый закон Ньютона:
Cуществуют такие системы отсчёта, относительно которых тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела или действие других тел скомпенсировано.

Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при уравновешенных внешних силах, действующих на него, называется инертностью. Явление сохранения скорости тела при уравновешенных внешних силах называют инерцией. Инерциальными системами отсчёта называют системы, в которых выполняется первый закон Ньютона.

Принцип относительности Галилея:во всех инерциальных системах отсчёта при одинаковых начальных условиях все механические явления протекают одинаково, т.е. подчиняются одинаковым законам

Масса — это мера инертности тела

Сила — это количественная мера взаимодействия тел.

Второй закон Ньютона:Сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этой силой:

$F↖{→} = m⋅a↖{→}$

Сложение сил заключается в нахождении равнодействующей нескольких сил, которая производит такое же действие, как и несколько одновременно действующих сил.

Третий закон Ньютона: Силы, с которыми два тела действуют друг на друга, расположены на одной прямой, равны по модулю и противоположны по направлению:

$F_1↖{→} = -F_2↖{→} $

III закон Ньютона подчёркивает, что действие тел друг на друга носит характер взаимодействия. Если тело A действует на тело B, то и тело B действует на тело
A (см. рис.).

Или короче, сила действия равна силе противодействия. Часто возникает вопрос: почему лошадь тянет сани, если эти тела взаимодействуют с равными силами? Это возможно только за счёт взаимодействия с третьим телом — Землёй. Сила, с которой копыта упираются в землю, должна быть больше, чем сила трения саней о землю. Иначе копыта будут проскальзывать, и лошадь не сдвинется с места.

Если тело подвергнуть деформации, то возникают силы, препятствующие этой деформации. Такие силы называют силами упругости.

Закон Гука записывают в виде

где k — жёсткость пружины, x — деформация тела. Знак «−» указывает, что сила и деформация направлены в разные стороны.

При движении тел друг относительно друга возникают силы, препятствующие движению. Эти силы называются силами трения. Различают трение покоя и трение скольжения. Сила трения скольжения подсчитывается по формуле

где N — сила реакции опоры, µ — коэффициент трения.

Эта сила не зависит от площади трущихся тел. Коэффициент трения зависит от материала, из которого сделаны тела, и качества обработки их поверхности.

  • Трение покоя возникает, если тела не перемещаются друг относительно друга. Сила трения покоя может меняться от нуля до некоторого максимального значения
  • Гравитационными силами называют силы, с которыми любые два тела притягиваются друг к другу.

Закон всемирного тяготения: любые два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

  1. Весом тела называют силу, с которой тело давит на горизонтальную опору или растягивает подвес.
  2. Сила тяжести — это сила, с которой все тела притягиваются к Земле:

Здесь R — расстояние между телами. Закон всемирного тяготения в таком виде справедлив либо для материальных точек, либо для тел шарообразной формы.

При неподвижной опоре вес тела равен по модулю силе тяжести:
Если тело движется по вертикали с ускорением, то его вес будет изменяться.
При движении тела с ускорением, направленным вверх, его вес
Видно, что вес тела больше веса покоящегося тела.
При движении тела с ускорением, направленным вниз, его вес
В этом случае вес тела меньше веса покоящегося тела.

Невесомостью называется такое движение тела, при котором его ускорение равно ускорению свободного падения, т.е. a = g. Это возможно в том случае, если на тело действует только одна сила — сила тяжести.

Искусственный спутник Земли — это тело, имеющее скорость V1, достаточную для того, чтобы двигаться по окружности вокруг Земли
На спутник Земли действует только одна сила — сила тяжести, направленная к центру Земли

Первая космическая скорость — это скорость, которую надо сообщить телу, чтобы оно обращалось вокруг планеты по круговой орбите.

где R — расстояние от центра планеты до спутника.
Для Земли, вблизи её поверхности, первая космическая скорость равна
Тело (материальная точка) находится в состоянии равновесия, если векторная сумма сил, действующих на него, равна нулю. Различают 3 вида равновесия: устойчивое, неустойчивое и безразличное. Если при выведении тела из положения равновесия возникают силы, стремящиеся вернуть это тело обратно, это устойчивое равновесие. Если возникают силы, стремящиеся увести тело ещё дальше из положения равновесия, это неустойчивое положение; если никаких сил не возникает — безразличное (см. рис. 3).

Когда речь идёт не о материальной точке, а о теле, которое может иметь ось вращения, то для достижения положения равновесия помимо равенства нулю суммы сил, действующих на тело, необходимо, чтобы алгебраическая сумма моментов всех сил, действующих на тело, была равна нулю.
Здесь d —плечо силы. Плечом силы d называют расстояние от оси вращения до линии действия силы.

  • Условие равновесия рычага:
  • Давлением называют физическую величину, равную отношению силы, действующей на площадку, перпендикулярную этой силе, к площади площадки:
  • Для жидкостей и газов справедлив закон Паскаля:

алгебраическая сумма моментов всех вращающих тело сил равна нулю.

давление распространяется по всем направлениям без изменений.
Если жидкость или газ находятся в поле силы тяжести, то каждый вышерасположенный слой давит на нижерасположенные и по мере погружения внутрь жидкости или газа давление растёт. Для жидкостей
где ρ — плотность жидкости, h — глубина проникновения в жидкость.
Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне. Если в колена сообщающихся сосудов залить жидкость с разными плотностями, то жидкость с большей плотностью устанавливается на меньшей высоте. В этом случае
Высоты столбов жидкости обратно пропорциональны плотностям:

Гидравлический пресс представляет собой сосуд, заполненный маслом или иной жидкостью, в котором прорезаны два отверстия, закрытые поршнями. Поршни имеют разную площадь. Если к одному поршню приложить некоторую силу, то сила, приложенная ко второму поршню, оказывается другой.

Таким образом, гидравлический пресс служит для преобразования величины силы. Поскольку давление под поршнями должно быть одинаковым, то

Тогда A1 = A2.

На тело, погружённое в жидкость или газ, со стороны этой жидкости или газа действует направленная вверх выталкивающая сила, которую называют силой Архимеда
Величину выталкивающей силы устанавливает закон Архимеда: на тело, погружённое в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх и равная весу жидкости или газа, вытесненного телом:

где ρжидк — плотность жидкости, в которую погружено тело; Vпогр — объём погружённой части тела.

Условие плавания тела — тело плавает в жидкости или газе, когда выталкивающая сила,действующая на тело, равна силе тяжести, действующей на тело.

Импульсом тела называют физическую величину, равную произведению массы тела на его скорость:

Импульс — векторная величина. [p] =кг·м/с. Наряду с импульсом тела часто пользуются импульсом силы. Это произведение силы на время её действия

Изменение импульса тела равно импульсу действующей на это тело силы. Для изолированной системы тел (система, тела которой взаимодействуют только друг с другом) выполняется закон сохранения импульса: сумма импульсов тел изолированной системы до взаимодействия равна сумме импульсов этих же тел после взаимодействия.
Механической работой называют физическую величину, которая равна произведению силы, действующей на тело, на перемещение тела и на косинус угла между направлением силы и перемещения:

Мощность — это работа, совершённая в единицу времени:

Способность тела совершать работу характеризуют величиной, которую называют энергией. Механическую энергию делят на кинетическую и потенциальную. Если тело может совершать работу за счёт своего движения, говорят, что оно обладает кинетической энергией. Кинетическая энергия поступательного движения материальной точки подсчитывается по формуле

Если тело может совершать работу за счёт изменения своего положения относительно других тел или за счёт изменения положения частей тела, оно обладает потенциальной энергией. Пример потенциальной энергии: тело, поднятое над землёй, его энергия подсчитывается по формуле

где h — высота подъёма

Энергия сжатой пружины:

где k — коэффициент жёсткости пружины, x — абсолютная деформация пружины.

Сумма потенциальной и кинетической энергии составляет механическую энергию.

Для изолированной системы тел в механике справедлив закон сохранения механической энергии: если между телами изолированной системы не действуют силы трения (или другие силы, приводящие к рассеянию энергии), то сумма механических энергий тел этой системы не изменяется (закон сохранения энергии в механике). Если же силы трения между телами изолированной системы есть, то при взаимодействии часть механической энергии тел переходит во внутреннюю энергию.

Колебаниями называются движения, обладающие той или иной степенью повторяемости во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.
Гармоническими колебаниями называются такие колебания, в которых колеблющаяся физическая величина x изменяется по закону синуса или косинуса, т.е.

Величина A, равная наибольшему абсолютному значению колеблющейся физической величины
x, называется амплитудой колебаний.

Выражение α = ωt + ϕ определяет значение x в данный момент времени и называется фазой колебаний. Периодом T называется время, за которое
колеблющееся тело совершает одно полное колебание.

Частотой периодических колебаний называют число полных колебаний, совершённых за единицу времени:

Частота измеряется в с-1. Эта единица называется герц (Гц).

  1. Математическим маятником называется материальная точка массой m, подвешенная на невесомой нерастяжимой нити и совершающая колебания в вертикальной плоскости.
  2. Период колебаний математического маятника определяется по формуле
  3. Период колебаний груза на пружине определяется по формуле
  4. Распространение колебаний в упругих средах.

Если один конец пружины закрепить неподвижно, а к другому её концу прикрепить некоторое тело массой m, то при выведении тела из положения равновесия пружина растянется и возникнут колебания тела на пружине в горизонтальной или вертикальной плоскости. Такой маятник называется пружинным.

где l — длина маятника.

где k — жёсткость пружины, m — масса груза.
Среда называется упругой, если между её частицами существуют силы взаимодействия. Волнами называется процесс распространения колебаний в упругих средах.

Волна называется поперечной, если частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Волна называется продольной, если колебания частиц среды происходят в направлении распространения волны.

Длиной волны называется расстояние между двумя ближайшими точками, колеблющимися в одинаковой фазе:

где v — скорость распространения волны.

Звуковыми волнами называют волны, колебания в которых происходят с частотами от 20 до 20 000 Гц.

Скорость звука различна в различных средах. Скорость звука в воздухе равна 340 м/c.

Ультразвуковыми волнами называют волны, частота колебаний в которых превышает 20 000 Гц. Ультразвуковые волны не воспринимаются человеческим ухом.

Источник: https://examer.ru/ege_po_fizike/teoriya/volny

Механические колебания и волны

Механика. Механические колебания и волны, звук - Студенческий портал

Механические колебания – периодически повторяющееся перемещение материальной точки, при котором она движется по какой-либо траектории поочередно в двух противоположных направлениях относительно положения устойчивого равновесия.

Отличительными признаками колебательного движения являются:

  • повторяемость движения;
  • возвратность движения.

Для существования механических колебаний необходимо:

  • наличие возвращающей силы – силы, стремящейся вернуть тело в положение равновесия (при малых смещениях от положения равновесия);
  • наличие малого трения в системе.

Механические волны – это процесс распространения колебаний в упругой среде.

Виды волн

  • Поперечная – это волна, в которой колебание частиц среды происходит перпендикулярно направлению распространения волны.

Механика. Механические колебания и волны, звук - Студенческий портал

Поперечная волна представляет собой чередование горбов и впадин. Поперечные волны возникают вследствие сдвига слоев среды относительно друг друга, поэтому они распространяются в твердых телах.

  • Продольная – это волна, в которой колебание частиц среды происходит в направлении распространения волны.

Механика. Механические колебания и волны, звук - Студенческий портал

Продольная волна представляет собой чередование областей уплотнения и разряжения. Продольные волны возникают из-за сжатия и разряжения среды, поэтому они могут возникать в жидких, твердых и газообразных средах.

Важно! Механические волны не переносят вещество среды. Они переносят энергию, которая складывается из кинетической энергии движения частиц среды и потенциальной энергии ее упругой деформации.

Читайте также:  Теория элит Гаэтано Моски - железный закон олигархических тенденций и учения философа

Гармонические колебания

Гармонические колебания – простейшие периодические колебания, при которых координата тела меняется по закону синуса или косинуса:

Механика. Механические колебания и волны, звук - Студенческий портал

где ​( x )​ – координата тела – смещение тела от положения равновесия в данный момент времени; ​( A )​ – амплитуда колебаний; ​( omega t+varphi_0 )​ – фаза колебаний; ​( omega )​ – циклическая частота; ​( varphi_0 )​ – начальная фаза.

Если в начальный момент времени тело проходит положение равновесия, то колебания являются синусоидальными.

Механика. Механические колебания и волны, звук - Студенческий портал

Если в начальный момент времени смещение тела совпадает с максимальным отклонением от положения равновесия, то колебания являются косинусоидальными.

Скорость гармонических колебаний Скорость гармонических колебаний есть первая производная координаты по времени:

Механика. Механические колебания и волны, звук - Студенческий портал

где ​( v )​ – мгновенное значение скорости, т. е. скорость в данный момент времени.

Амплитуда скорости – максимальное значение скорости колебаний, это величина, стоящая перед знаком синуса или косинуса:

Ускорение гармонических колебаний Ускорение гармонических колебаний есть первая производная скорости по времени:

Механика. Механические колебания и волны, звук - Студенческий портал

где ​( a )​ – мгновенное значение ускорения, т. е. ускорение в данный момент времени.

Амплитуда ускорения – максимальное значение ускорения, это величина, стоящая перед знаком синуса или косинуса:

Если тело совершает гармонические колебания, то сила, действующая на тело, тоже изменяется по гармоническому закону:

Механика. Механические колебания и волны, звук - Студенческий портал

где ​( F )​ – мгновенное значение силы, действующей на тело, т. е. сила в данный момент времени.

  • Амплитуда силы – максимальное значение силы, величина, стоящая перед знаком синуса или косинуса:
  • Тело, совершающее гармонические колебания, обладает кинетической или потенциальной энергией:

где ​( W_k )​ – мгновенное значение кинетической энергии, т. е. кинетическая энергия в данный момент времени.

  1. Амплитуда кинетической энергии – максимальное значение кинетической энергии, величина, стоящая перед знаком синуса или косинуса:
  2. При гармонических колебаниях каждую четверть периода происходит переход потенциальной энергии в кинетическую и обратно. В положении равновесия:
  • потенциальная энергия равна нулю;
  • кинетическая энергия максимальна.

При максимальном отклонении от положения равновесия:

  • кинетическая энергия равна нулю;
  • потенциальная энергия максимальна.

Полная механическая энергия гармонических колебаний При гармонических колебаниях полная механическая энергия равна сумме кинетической и потенциальной энергий в данный момент времени:

Важно! Следует помнить, что период колебаний кинетической и потенциальной энергий в 2 раза меньше, чем период колебаний координаты, скорости, ускорения и силы. А частота колебаний кинетической и потенциальной энергий в 2 раза больше, чем частота колебаний координаты, скорости, ускорения и силы.

Графики зависимости кинетической, потенциальной и полной энергий всегда лежат выше оси времени.

Если сила сопротивления отсутствует, то полная энергия сохраняется. График зависимости полной энергии от времени есть прямая, параллельная оси времени (в отсутствие сил трения).

Амплитуда и фаза колебаний

Амплитуда колебаний – модуль наибольшего смещения тела от положения равновесия. Обозначение – ​( A, (X_{max}) )​, единицы измерения – м.

Фаза колебаний – это величина, которая определяет состояние колебательной системы в любой момент времени. Обозначение – ​( varphi )​, единицы измерения – рад (радиан).

Фаза колебаний – это величина, стоящая под знаком синуса или косинуса. Она показывает, какая часть периода прошла от начала колебаний. Фаза гармонических колебаний в процессе колебаний изменяется.

​( varphi_0 )​ – начальная фаза колебаний.

Начальная фаза колебаний – величина, которая определяет положение тела в начальный момент времени.

Важно! Путь, пройденный телом за одно полное колебание, равен четырем амплитудам.

Период колебаний

Период колебаний – это время одного полного колебания. Обозначение – ​( T )​, единицы измерения – с.

Период гармонических колебаний – постоянная величина.

Частота колебаний

Частота колебаний – это число полных колебаний в единицу времени. Обозначение – ​(
u )​, единицы времени – с-1 или Гц (Герц).

  • 1 Гц – это частота такого колебательного движения, при котором за каждую секунду совершается одно полное колебание:
  • Период и частота колебаний – взаимно обратные величины:

Циклическая частота – это число колебаний за 2π секунд. Обозначение – ​( omega )​, единицы измерения – рад/с.

Свободные колебания (математический и пружинный маятники)

Свободные колебания – колебания, которые совершает тело под действием внутренних сил системы за счет начального запаса энергии после того как его вывели из положения устойчивого равновесия.

Условия возникновения свободных колебаний:

  • при выведении тела из положения равновесия должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
  • силы трения в системе должны быть достаточно малы. При наличии сил трения свободные колебания будут затухающими.

При наличии сил трения свободные колебания будут затухающими. Затухающие колебания – это колебания, амплитуда которых с течением времени уменьшается.

  1. Математический маятник – это материальная точка, подвешенная на невесомой нерастяжимой нити.
  2. Период колебаний математического маятника:
  3. Частота колебаний математического маятника:
  4. Циклическая частота колебаний математического маятника:
  5. Максимальное значение скорости колебаний математического маятника:
  6. Максимальное значение ускорения колебаний математического маятника:
  7. Период свободных колебаний математического маятника, движущегося вверх с ускорением или вниз с замедлением:
  8. Период свободных колебаний математического маятника, движущегося вниз с ускорением или вверх с замедлением:
  9. Период свободных колебаний математического маятника, горизонтально с ускорением или замедлением:
  10. Мгновенное значение потенциальной энергии математического маятника, поднявшегося в процессе колебаний на высоту ​( h )​, определяется по формуле:
  11. где ​( l )​ – длина нити, ​( alpha )​ – угол отклонения от вертикали.
  12. Пружинный маятник – это тело, подвешенное на пружине и совершающее колебания вдоль вертикальной или горизонтальной оси под действием силы упругости пружины.
  13. Период колебаний пружинного маятника:
  14. Частота колебаний пружинного маятника:
  15. Циклическая частота колебаний пружинного маятника:
  16. Максимальное значение скорости колебаний пружинного маятника:
  17. Максимальное значение ускорения колебаний пружинного маятника:
  18. Мгновенную потенциальную энергию пружинного маятника можно найти по формуле:
  19. Амплитуда потенциальной энергии – максимальное значение потенциальной энергии, величина, стоящая перед знаком синуса или косинуса:

Важно! Если маятник не является ни пружинным, ни математическим (физический маятник), то его циклическую частоту, период и частоту колебаний по формулам, применимым к математическому и пружинному маятнику, рассчитать нельзя. В данном случае эти величины рассчитываются из формулы силы, действующей на маятник, или из формул энергий.

Вынужденные колебания

Вынужденные колебания – это колебания, происходящие под действием внешней периодически изменяющейся силы.

Вынужденные колебания, происходящие под действием гармонически изменяющейся внешней силы, тоже являются гармоническими и незатухающими. Их частота равна частоте внешней силы и называется частотой вынужденных колебаний.

Резонанс

  • Резонанс – явление резкого возрастания амплитуды колебаний, которое происходит при совпадении частоты вынуждающей силы и собственной частоты колебаний тела.
  • Условие резонанса:
  • ​( v_0 )​ – собственная частота колебаний маятника.

На рисунке изображены резонансные кривые для сред с разным трением.

Чем меньше трение, тем выше и острее резонансная кривая.

Явление резонанса учитывается при периодически изменяющихся нагрузках в машинах и различных сооружениях. Также резонанс используется в акустике, радиотехнике и т. д.

Длина волны

Длина волны – это расстояние, на которое волна распространяется за один период, т. е. это кратчайшее расстояние между двумя точками среды, колеблющимися в одинаковых фазах. Обозначение – ​( lambda )​, единицы измерения – м.

  1. Расстояние между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разряжениями в продольной волне равно длине волны.
  2. Скорость распространения волны – это скорость перемещения горбов и впадин в поперечной волне и сгущений или разряжений в продольной волне.

Звук

Звук – это колебания упругой среды, воспринимаемые органом слуха.

Условия, необходимые для возникновения и ощущения звука:

  • наличие источника звука;
  • наличие упругой среды между источником и приемником звука;
  • наличие приемника звука; • частота колебаний должна лежать в звуковом диапазоне;
  • мощность звука должна быть достаточной для восприятия.

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.

Классификация звуковых волн:

  • инфразвук (​(
    u )​ < 16 Гц);
  • звуковой диапазон (16 Гц < (
    u ) < 20 000 Гц);
  • ультразвук ((
    u ) > 20 000 Гц).

Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.

Скорость звука зависит

  • от упругих свойств среды:
  • в воздухе – 331 м/с, в воде – 1400 м/с, в металле – 5000 м/с;
  • в воздухе при температуре 0°С – 331 м/с, в воздухе при температуре +15°С – 340 м/с.
  • Характеристики звуковой волны
  • Громкость – это величина, характеризующая слуховые ощущения человека, зависящая от амплитуды колебаний в звуковой волне. Единицы измерения – дБ (децибел).
  • Высота тона – это величина, характеризующая слуховые ощущения человека, зависящая от частоты колебаний в звуковой волне. Чем больше частота, тем выше звук. Чем меньше частота, тем ниже звук.
  • Тембр – это окраска звука.

Музыкальный звук – это звук, издаваемый гармонически колеблющимся телом. Каждому музыкальному тону соответствует определенная длина и частота звуковой волны. Шум – хаотическая смесь тонов.

Источник: https://fizi4ka.ru/egje-2018-po-fizike/mehanicheskie-kolebanija-i-volny-2.html

Механические волны

  • Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
  • Темы кодификатора ЕГЭ: механические волны, длина волны, звук.
  • Механические волны — это процесс распространения в пространстве колебаний частиц упругой среды (твёрдой, жидкой или газообразной).

Наличие у среды упругих свойств является необходимым условием распространения волн: деформация, возникающая в каком-либо месте, благодаря взаимодействию соседних частиц последовательно передаётся от одной точки среды к другой. Различным типам деформаций будут соответствовать разные типы волн.

Продольные и поперечные волны

Волна называется продольной, если частицы среды колеблются параллельно направлению распространения волны. Продольная волна состоит из чередующихся деформаций растяжения и сжатия. На рис.

1 показана продольная волна, представляющая собой колебания плоских слоёв среды; направление, вдоль которого колеблются слои, совпадает с направлением распространения волны (т. е.перпендикулярно слоям).

Механика. Механические колебания и волны, звук - Студенческий портал
Рис. 1. Продольная волна

Волна называется поперечной, если частицы среды колеблются перпендикулярно направлению распространения волны. Поперечная волна вызывается деформациями сдвига одного слоя среды относительно другого. На рис. 2 каждый слой колеблется вдоль самого себя, а волна идёт перпендикулярно слоям.

Механика. Механические колебания и волны, звук - Студенческий портал
Рис. 2. Поперечная волна

Продольные волны могут распространяться в твёрдых телах, жидкостях и газах: во всех этих средах возникает упругая реакция на сжатие, в результате которой появятся бегущие друг за другом сжатия и разрежения среды.

Однако жидкости и газы, в отличие от твёрдых тел, не обладают упругостью по отношению к сдвигу слоёв. Поэтому поперечные волны могут распространяться в твёрдых телах, но не внутри жидкостей и газов*.

Важно отметить, что частицы среды при прохождении волны совершают колебания вблизи неизменных положений равновесия, т. е. в среднем остаются на своих местах. Волна, таким образом, осуществляет
перенос энергии, не сопровождающийся переносом вещества.

Наиболее просты для изучения гармонические волны. Они вызываются внешним воздействием на среду, меняющимся по гармоническому закону. При распространении гармонической волны частицы среды совершают гармонические колебания с частотой, равной частоте внешнего воздействия. Гармоническими волнами мы в дальнейшем и ограничимся.

Рассмотрим процесс распространения волны более подробно. Допустим, что некоторая частица среды (частица ) начала совершать колебания с периодом . Действуя на соседнюю частицу она потянет её за собой. Частица в свою очередь, потянет за собой частицу и т. д. Так возникнет волна, в которой все частицы будут совершать колебания с периодом .

Однако частицы имеют массу, т. е. обладают инертностью. На изменение их скорости требуется некоторое время. Следовательно, частица в своём движении будет несколько отставать от частицы , частица будет отставать от частицы и т. д. Когда частица пустя время завершит первое колебание и начнёт второе, своё первое колебание начнёт частица , находящаяся от частицы на некотором расстоянии .

Итак, за время, равное периоду колебаний частиц, возмущение среды распространяется на расстояние . Это расстояние называется длиной волны. Колебания частицы будут идентичны колебаниям частицы колебания следующей частицы будут идентичны колебаниям частицы и т.

д. Колебания как бы воспроизводят себя на расстоянии можно назвать пространственным периодом колебаний; наряду с временным периодом она является важнейшей характеристикой волнового процесса.

В продольной волне длина волны равна расстоянию между соседними сжатиями или разрежениями (рис. 1). В поперечной — расстоянию между соседними горбами или впадинами (рис. 2).

Вообще, длина волны равна расстоянию (вдоль направления распространения волны) между двумя ближайшими частицами среды, колеблющимися одинаково (т. е. с разностью фаз, равной ).

  1. Скоростью распространения волны называется отношение длины волны к периоду колебаний частиц среды:
  2. Частотой волны называется частота колебаний частиц:
  3. Отсюда получаем связь скорости волны, длины волны и частоты:
  4. Звук

Звуковыми волнами в широком смысле называются всякие волны, распространяющиеся в упругой среде. В узком смысле звуком называют звуковые волны в диапазоне частот от 16 Гц до 20 кГц, воспринимаемые человеческим ухом. Ниже этого диапазона лежит область инфразвука, выше — область ультразвука.

К основным характеристикам звука относятся громкость и высота.
Громкость звука определяется амплитудой колебаний давления в звуковой волне и измеряется в специальных единицах -децибелах (дБ). Так, громкость 0 дБ является порогом слышимости, 10 дБ — тиканье часов, 50 дБ — обычный разговор, 80 дБ — крик, 130 дБ — верхняя граница слышимости (так называемый болевой порог).

Тон — это звук, который издаёт тело, совершающее гармонические колебания (например, камертон или струна). Высота тона определяется частотой этих колебаний: чем выше частота, тем выше нам кажется звук. Так, натягивая струну, мы увеличиваем частоту её колебаний и, соответственно, высоту звука.

Скорость звука в разных средах различна: чем более упругой является среда, тем быстрее в ней распространяется звук. В жидкостях скорость звука больше, чем в газах, а в твёрдых телах — больше, чем в жидкостях.
Например, скорость звука в воздухе при равна примерно 340 м/с (её удобно запомнить как «треть километра в секунду»)*.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/mexanicheskie-volny/

Ссылка на основную публикацию