Сила тяжести. вес. закон галилея — студенческий портал

Часть механики, в которой изучают движение, не рассматривая причины, вызывающие тот или иной характер движения, называют кинематикой.
Механическим движением называют изменение положения тела относительно других тел
Системой отсчёта называют тело отсчёта, связанную с ним систему координат и часы.

Телом отсчёта называют тело, относительно которого рассматривают положение других тел.
Материальной точкой называют тело, размерами которого в данной задаче можно пренебречь.
Траекторией называют мысленную линию, которую при своём движении описывает материальная точка.

По форме траектории движение делится на:

а) прямолинейное — траектория представляет собой отрезок прямой;

б) криволинейное — траектория представляет собой отрезок кривой.
Путь — это длина траектории, которую описывает материальная точка за данный промежуток времени. Это скалярная величина.
Перемещение — это вектор, соединяющий начальное положение материальной точки с её конечным положением (см. рис.).

Сила тяжести. Вес. Закон Галилея - Студенческий портал

Очень важно понимать, чем путь отличается от перемещения. Самое главной отличие в том, что перемещение — это вектор с началом в точке отправления и с концом в точке назначения (при этом абсолютно неважно, каким маршрутом это перемещение совершалось). А путь — это, наборот, скалярная величина, отражающая длину пройденной траектории.

Равномерным прямолинейным движением называют движение, при котором материальная точка за любые равные промежутки времени совершает одинаковые перемещения
Скоростью равномерного прямолинейного движения называют отношение перемещения ко времени, за которое это перемещение произошло:

Сила тяжести. Вес. Закон Галилея - Студенческий портал

Для неравномерного движения пользуются понятием средней скорости. Часто вводят среднюю скорость как скалярную величину. Это скорость такого равномерного движения, при котором тело проходит тот же путь за то же время, что и при неравномерном движении:

Мгновенной скоростью называют скорость тела в данной точке траектории или в данный момент времени.

Равноускоренное прямолинейное движение — это прямолинейное движение, при котором мгновенная скорость за любые равные промежутки времени изменяется на одну и ту же величину Ускорением называют отношение изменения мгновенной скорости тела ко времени, за которое это изменение произошло:

Сила тяжести. Вес. Закон Галилея - Студенческий портал

Зависимость координаты тела от времени в равномерном прямолинейном движении имеет вид: x = x0 + Vxt, где x0 — начальная координата тела, Vx — скорость движения.
Свободным падением называют равноускоренное движение с постоянным ускорением g = 9,8 м/с2, не зависящим от массы падающего тела. Оно происходит только под действием силы тяжести.

Сила тяжести. Вес. Закон Галилея - Студенческий порталСила тяжести. Вес. Закон Галилея - Студенческий портал

Одним из видов движения материальной точки является движение по окружности. При таком движении скорость тела направлена по касательной, проведённой к окружности в той точке, где находится тело (линейная скорость). Описывать положение тела на окружности можно с помощью радиуса, проведённого из центра окружности к телу.

Перемещение тела при движении по окружности описывается поворотом радиуса окружности, соединяющего центр окружности с телом. Отношение угла поворота радиуса к промежутку времени, в течение которого этот поворот произошёл, характеризует быстроту перемещения тела по окружности и носит название угловой скорости
ω
:
Сила тяжести. Вес. Закон Галилея - Студенческий портал
Угловая скорость связана с линейной скоростью соотношением

Сила тяжести. Вес. Закон Галилея - Студенческий портал где r — радиус окружности.

Время, за которое тело описывает полный оборот, называется периодом обращения. Величина, обратная периоду — частота обращения — ν

Сила тяжести. Вес. Закон Галилея - Студенческий портал

Поскольку при равномерном движении по окружности модуль скорости не меняется, но меняется направление скорости, при таком движении существует ускорение. Его называют центростремительным ускорением, оно направлено по радиусу к центру окружности:

Сила тяжести. Вес. Закон Галилея - Студенческий портал

Основные понятия и законы динамики

Часть механики, изучающая причины, вызвавшие ускорение тел, называется динамикой

Первый закон Ньютона:
Cуществуют такие системы отсчёта, относительно которых тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела или действие других тел скомпенсировано.

Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при уравновешенных внешних силах, действующих на него, называется инертностью. Явление сохранения скорости тела при уравновешенных внешних силах называют инерцией. Инерциальными системами отсчёта называют системы, в которых выполняется первый закон Ньютона.

Принцип относительности Галилея:во всех инерциальных системах отсчёта при одинаковых начальных условиях все механические явления протекают одинаково, т.е. подчиняются одинаковым законам

Масса — это мера инертности тела

Сила — это количественная мера взаимодействия тел.

Второй закон Ньютона:Сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этой силой:

$F↖{→} = m⋅a↖{→}$

Сложение сил заключается в нахождении равнодействующей нескольких сил, которая производит такое же действие, как и несколько одновременно действующих сил.

Третий закон Ньютона: Силы, с которыми два тела действуют друг на друга, расположены на одной прямой, равны по модулю и противоположны по направлению:

$F_1↖{→} = -F_2↖{→} $

III закон Ньютона подчёркивает, что действие тел друг на друга носит характер взаимодействия. Если тело A действует на тело B, то и тело B действует на тело
A (см. рис.).

Или короче, сила действия равна силе противодействия. Часто возникает вопрос: почему лошадь тянет сани, если эти тела взаимодействуют с равными силами? Это возможно только за счёт взаимодействия с третьим телом — Землёй. Сила, с которой копыта упираются в землю, должна быть больше, чем сила трения саней о землю. Иначе копыта будут проскальзывать, и лошадь не сдвинется с места.

Если тело подвергнуть деформации, то возникают силы, препятствующие этой деформации. Такие силы называют силами упругости.

Закон Гука записывают в виде

где k — жёсткость пружины, x — деформация тела. Знак «−» указывает, что сила и деформация направлены в разные стороны.

При движении тел друг относительно друга возникают силы, препятствующие движению. Эти силы называются силами трения. Различают трение покоя и трение скольжения. Сила трения скольжения подсчитывается по формуле

где N — сила реакции опоры, µ — коэффициент трения.

Эта сила не зависит от площади трущихся тел. Коэффициент трения зависит от материала, из которого сделаны тела, и качества обработки их поверхности.

  • Трение покоя возникает, если тела не перемещаются друг относительно друга. Сила трения покоя может меняться от нуля до некоторого максимального значения
  • Гравитационными силами называют силы, с которыми любые два тела притягиваются друг к другу.

Закон всемирного тяготения: любые два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

  1. Весом тела называют силу, с которой тело давит на горизонтальную опору или растягивает подвес.
  2. Сила тяжести — это сила, с которой все тела притягиваются к Земле:

Здесь R — расстояние между телами. Закон всемирного тяготения в таком виде справедлив либо для материальных точек, либо для тел шарообразной формы.

При неподвижной опоре вес тела равен по модулю силе тяжести:
Если тело движется по вертикали с ускорением, то его вес будет изменяться.
При движении тела с ускорением, направленным вверх, его вес
Видно, что вес тела больше веса покоящегося тела.
При движении тела с ускорением, направленным вниз, его вес
В этом случае вес тела меньше веса покоящегося тела.

Невесомостью называется такое движение тела, при котором его ускорение равно ускорению свободного падения, т.е. a = g. Это возможно в том случае, если на тело действует только одна сила — сила тяжести.

Искусственный спутник Земли — это тело, имеющее скорость V1, достаточную для того, чтобы двигаться по окружности вокруг Земли
На спутник Земли действует только одна сила — сила тяжести, направленная к центру Земли

Первая космическая скорость — это скорость, которую надо сообщить телу, чтобы оно обращалось вокруг планеты по круговой орбите.

где R — расстояние от центра планеты до спутника.
Для Земли, вблизи её поверхности, первая космическая скорость равна
Тело (материальная точка) находится в состоянии равновесия, если векторная сумма сил, действующих на него, равна нулю. Различают 3 вида равновесия: устойчивое, неустойчивое и безразличное. Если при выведении тела из положения равновесия возникают силы, стремящиеся вернуть это тело обратно, это устойчивое равновесие. Если возникают силы, стремящиеся увести тело ещё дальше из положения равновесия, это неустойчивое положение; если никаких сил не возникает — безразличное (см. рис. 3).

Когда речь идёт не о материальной точке, а о теле, которое может иметь ось вращения, то для достижения положения равновесия помимо равенства нулю суммы сил, действующих на тело, необходимо, чтобы алгебраическая сумма моментов всех сил, действующих на тело, была равна нулю.
Здесь d —плечо силы. Плечом силы d называют расстояние от оси вращения до линии действия силы.

  • Условие равновесия рычага:
  • Давлением называют физическую величину, равную отношению силы, действующей на площадку, перпендикулярную этой силе, к площади площадки:
  • Для жидкостей и газов справедлив закон Паскаля:

алгебраическая сумма моментов всех вращающих тело сил равна нулю.

давление распространяется по всем направлениям без изменений.
Если жидкость или газ находятся в поле силы тяжести, то каждый вышерасположенный слой давит на нижерасположенные и по мере погружения внутрь жидкости или газа давление растёт. Для жидкостей
где ρ — плотность жидкости, h — глубина проникновения в жидкость.
Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне. Если в колена сообщающихся сосудов залить жидкость с разными плотностями, то жидкость с большей плотностью устанавливается на меньшей высоте. В этом случае
Высоты столбов жидкости обратно пропорциональны плотностям:

Гидравлический пресс представляет собой сосуд, заполненный маслом или иной жидкостью, в котором прорезаны два отверстия, закрытые поршнями. Поршни имеют разную площадь. Если к одному поршню приложить некоторую силу, то сила, приложенная ко второму поршню, оказывается другой.

Таким образом, гидравлический пресс служит для преобразования величины силы. Поскольку давление под поршнями должно быть одинаковым, то

Тогда A1 = A2.

На тело, погружённое в жидкость или газ, со стороны этой жидкости или газа действует направленная вверх выталкивающая сила, которую называют силой Архимеда
Величину выталкивающей силы устанавливает закон Архимеда: на тело, погружённое в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх и равная весу жидкости или газа, вытесненного телом:

где ρжидк — плотность жидкости, в которую погружено тело; Vпогр — объём погружённой части тела.

Условие плавания тела — тело плавает в жидкости или газе, когда выталкивающая сила,действующая на тело, равна силе тяжести, действующей на тело.

Импульсом тела называют физическую величину, равную произведению массы тела на его скорость:

Импульс — векторная величина. [p] =кг·м/с. Наряду с импульсом тела часто пользуются импульсом силы. Это произведение силы на время её действия

Изменение импульса тела равно импульсу действующей на это тело силы. Для изолированной системы тел (система, тела которой взаимодействуют только друг с другом) выполняется закон сохранения импульса: сумма импульсов тел изолированной системы до взаимодействия равна сумме импульсов этих же тел после взаимодействия.
Механической работой называют физическую величину, которая равна произведению силы, действующей на тело, на перемещение тела и на косинус угла между направлением силы и перемещения:

Мощность — это работа, совершённая в единицу времени:

Способность тела совершать работу характеризуют величиной, которую называют энергией. Механическую энергию делят на кинетическую и потенциальную. Если тело может совершать работу за счёт своего движения, говорят, что оно обладает кинетической энергией. Кинетическая энергия поступательного движения материальной точки подсчитывается по формуле

Читайте также:  Древнегреческая культура - студенческий портал

Если тело может совершать работу за счёт изменения своего положения относительно других тел или за счёт изменения положения частей тела, оно обладает потенциальной энергией. Пример потенциальной энергии: тело, поднятое над землёй, его энергия подсчитывается по формуле

где h — высота подъёма

Энергия сжатой пружины:

где k — коэффициент жёсткости пружины, x — абсолютная деформация пружины.

Сумма потенциальной и кинетической энергии составляет механическую энергию.

Для изолированной системы тел в механике справедлив закон сохранения механической энергии: если между телами изолированной системы не действуют силы трения (или другие силы, приводящие к рассеянию энергии), то сумма механических энергий тел этой системы не изменяется (закон сохранения энергии в механике). Если же силы трения между телами изолированной системы есть, то при взаимодействии часть механической энергии тел переходит во внутреннюю энергию.

Колебаниями называются движения, обладающие той или иной степенью повторяемости во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.
Гармоническими колебаниями называются такие колебания, в которых колеблющаяся физическая величина x изменяется по закону синуса или косинуса, т.е.

Величина A, равная наибольшему абсолютному значению колеблющейся физической величины
x, называется амплитудой колебаний.

Выражение α = ωt + ϕ определяет значение x в данный момент времени и называется фазой колебаний. Периодом T называется время, за которое
колеблющееся тело совершает одно полное колебание.

Частотой периодических колебаний называют число полных колебаний, совершённых за единицу времени:

Частота измеряется в с-1. Эта единица называется герц (Гц).

  1. Математическим маятником называется материальная точка массой m, подвешенная на невесомой нерастяжимой нити и совершающая колебания в вертикальной плоскости.
  2. Период колебаний математического маятника определяется по формуле
  3. Период колебаний груза на пружине определяется по формуле
  4. Распространение колебаний в упругих средах.

Если один конец пружины закрепить неподвижно, а к другому её концу прикрепить некоторое тело массой m, то при выведении тела из положения равновесия пружина растянется и возникнут колебания тела на пружине в горизонтальной или вертикальной плоскости. Такой маятник называется пружинным.

где l — длина маятника.

где k — жёсткость пружины, m — масса груза.
Среда называется упругой, если между её частицами существуют силы взаимодействия. Волнами называется процесс распространения колебаний в упругих средах.

Волна называется поперечной, если частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Волна называется продольной, если колебания частиц среды происходят в направлении распространения волны.

Длиной волны называется расстояние между двумя ближайшими точками, колеблющимися в одинаковой фазе:

где v — скорость распространения волны.

Звуковыми волнами называют волны, колебания в которых происходят с частотами от 20 до 20 000 Гц.

Скорость звука различна в различных средах. Скорость звука в воздухе равна 340 м/c.

Ультразвуковыми волнами называют волны, частота колебаний в которых превышает 20 000 Гц. Ультразвуковые волны не воспринимаются человеческим ухом.

Источник: https://examer.ru/ege_po_fizike/teoriya/zakoni_newtona

Основные законы Динамики. Законы Ньютона

Сила тяжести. Вес. Закон Галилея - Студенческий портал
Проект Карла III Ребане и хорошей компании


Раздел недели: Тепловые величины: теплоемкость, теплопроводность, температуры кипения, плавления, пламени…
Сила тяжести. Вес. Закон Галилея - Студенческий портал
Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Физический справочник / / Физика для самых маленьких. Шпаргалки. Школа.  / / Основные законы Динамики. Законы Ньютона — первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения — покоя, скольжения, качения + трение в жидкостях и газах.

  • Вариант1. Существуют такие системы отсчета, называемые инерциальными, относительно которых тело движется прямолинейно и равномерно или покоится, если на него не действует сила, или действие внешних сил взаимно скомпенсировано.
  • Вариант2. Существуют такие системы отсчета, называемые инерциальными, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной (в т.ч. равной 0) , если на него не действуют другие тела (или действие других тел взаимно компенсируется)
  • Сила тяжести. Вес. Закон Галилея - Студенческий портал
Сила тяжести. Вес. Закон Галилея - Студенческий портал
  • Сила, действующая на тело равна произведению массы тела на сообщаемое этому телу этой силой ускорение
  • Под «силой» понимается равнодействующая всех сил:
  • Сила тяжести. Вес. Закон Галилея - Студенческий портал
Сила тяжести. Вес. Закон Галилея - Студенческий портал
  • Вариант 1. Тела действуют друг на друга с силами, направленными вдоль одной и той-же прямой, равными по модулю и противоположными по направлению
  • Вариант 2. Действие равно противодействию
  • Сила тяжести. Вес. Закон Галилея - Студенческий портал
Сила тяжести. Вес. Закон Галилея - Студенческий портал
  • Все механические процессы протекают одинаково во всех инерциальных системах отсчета:
  • где:
  •   — это гравитационная постоянная
  • Сила тяжести — сила, с которой Земля притягивает тело, находящееся на ее поверхности или на некотором расстоянии от поверхности. Определяется законом всемирного тяготения.
  • Вблизи поверхности Земли и на ее поверхности сила тяжести:
  •   — где:
  • -ускорение свободного падения
  • Силы упругости —  силы, возникающие при деформации (изменении объема или формы) тела.
    • Строго говоря, имеется в виду упругая деформация, т.е. такая, которая после снятия нагрузки — исчезает, хотя , бывает, понятие используют и при неупругой (невозвратной) деформации.
  • Закон Гука. При упругой деформации растяжения (или сжатия) модуль силы упругости прямо пропорционален абсолютному значению изменения длины тела:
  • где k-коэффициент упругости 
  • Сила реакции опоры:
  • Вес тела (Р) — Сила, с которой тело действует на опору или подвес:
  • 1. Трение покоя = силе, приложенной к телу
  • 2. Трение скольжения — относительно постоянная величина, после начала движения
  • 3.Трение качения, вполне корректный подход
  • 4 Трение в жидкостях и газах — очень упрощенный подход. Трение прямо пропорционально скорости только на малых скоростях, в маловязких жидкостях и т.д.

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста. Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса.

Источник: https://dpva.ru/Guide/GuidePhysics/PhysicsForKids/DynamicsNewtoneLaws/

Законы Ньютона для

Мы уже говорили об основах классической механики. Настала пора поговорить о них подробнее и затронуть в обсуждении чуть больше, чем просто основу. В этой статье мы подробно разберем основные законы классической механики. Как вы уже догадались, речь пойдет о законах Ньютона.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Основные законы классической механики Исаак Ньютон (1642-1727) собрал и опубликовал в 1687 году. Три знаменитых закона были включены в труд, который назывался «Математические начала натуральной философии».

  • Был долго этот мир глубокой тьмой окутан
    Да будет свет, и тут явился Ньютон.
  • (Эпиграмма 18-го века)
  • Но сатана недолго ждал реванша —
    Пришел Эйнштейн, и стало все как раньше.
  • (Эпиграмма 20-го века)

Что стало, когда пришел Эйнштейн, читайте в отдельном материале про релятивистскую динамику. А мы пока приведем формулировки и примеры решения задач на каждый закон Ньютона.

Первый закон Ньютона

Первый закон Ньютона гласит:

Существуют такие системы отсчета, называемые инерциальными, в которых тела движутся равномерно и прямолинейно, если на них не действуют никакие силы или действие других сил скомпенсировано.

Проще говоря, суть первого закона Ньютона можно сформулировать так: если мы на абсолютно ровной дороге толкнем тележку и представим, что можно пренебречь силами трения колес и сопротивления воздуха, то она будет катиться с одинаковой скоростью бесконечно долго.

Инерция – это способность тела сохранять скорость как по направлению, так и по величине, при отсутствии воздействий на тело. Первый закон Ньютона еще называют законом инерции.

До Ньютона закон инерции был сформулирован в менее четкой форме Галилео Галилеем. Инерцию ученый называл «неистребимо запечатленным движением». Закон инерции Галилея гласит: при отсутствии внешних сил тело либо покоится, либо движется равномерно. Огромная заслуга Ньютона в том, что он сумел объединить принцип относительности Галилея, собственные труды и работы других ученых в своих «Математических началах натуральной философии».

Понятно, что таких систем, где тележку толкнули, а она покатилась без действия внешних сил, на самом деле не бывает. На тела всегда действуют силы, причем скомпенсировать действие этих сил полностью практически невозможно.

Например, все на Земле находится в постоянном поле силы тяжести. Когда мы передвигаемся (не важно, ходим пешком, ездим на машине или велосипеде), нам нужно преодолевать множество сил: силу трения качения и силу трения скольжения, силу тяжести, силу Кориолиса.

Сила тяжести. Вес. Закон Галилея - Студенческий портал
 

Второй закон Ньютона

Помните пример про тележку? В этот момент мы приложили к ней силу! Интуитивно понятно, что тележка покатится и вскоре остановится. Это значит, ее скорость изменится.

В реальном мире скорость тела чаще всего изменяется, а не остается постоянной. Другими словами, тело движется с ускорением. Если скорость нарастает или убывает равномерно, то говорят, что движение равноускоренное.

Если рояль падает с крыши дома вниз, то он движется равноускоренно под действием постоянного ускорения свободного падения g. Причем любой дугой предмет, выброшенный из окна на нашей планете, будет двигаться с тем же ускорением свободного падения.

Второй закон Ньютона устанавливает связь между массой, ускорением и силой, действующей на тело. Приведем формулировку второго закона Ньютона:

Ускорение тела (материальной точки) в инерциальной системе отсчета прямо пропорционально приложенной к нему силе и обратно пропорционально массе.

Сила тяжести. Вес. Закон Галилея - Студенческий портал
Сила тяжести. Вес. Закон Галилея - Студенческий портал
 

Если на тело действует сразу несколько сил, то в данную формулу подставляется равнодействующая всех сил, то есть их векторная сумма.

В такой формулировке второй закон Ньютона применим только для движения со скоростью, много меньшей, чем скорость света.

Существует более универсальная формулировка данного закона,  так называемый дифференциальный вид.

Сила тяжести. Вес. Закон Галилея - Студенческий портал

В любой бесконечно малый промежуток времени dt сила, действующая на тело, равна производной импульса тела по времени.

Третий закон Ньютона

В чем состоит третий закон Ньютона? Этот закон описывает взаимодействие тел.

3 закон Ньютона говорит нам о том, что на любое действие найдется противодействие. Причем, в прямом смысле:

Два тела воздействуют друг на друга с силами, противоположными по направлению, но равными по модулю.

Формула, выражающая третий закон Ньютона:

Сила тяжести. Вес. Закон Галилея - Студенческий портал

Другими словами, третий закон Ньютона — это закон действия и противодействия.

Сила тяжести. Вес. Закон Галилея - Студенческий портал
 

Пример задачи на законы Ньютона

Вот типичная задачка на применение законов Ньютона. В ее решении используются первый и второй законы Ньютона.

Десантник раскрыл парашют и опускается вниз с постоянной скоростью. Какова сила сопротивления воздуха? Масса десантника – 100 килограмм.

Решение:  

Движение парашютиста – равномерное и прямолинейное, поэтому, по первому закону Ньютона, действие сил на него скомпенсировано.

На десантника действуют сила тяжести и сила сопротивления воздуха. Силы направлены в противоположные стороны.

По второму закону Ньютона, сила тяжести равна ускорению свободного падения, умноженному на массу десантника.

Сила тяжести. Вес. Закон Галилея - Студенческий портал

  1. Ответ: Сила сопротивления воздуха равна силе тяжести по модулю и противоположна направлена.
  2. Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
  3. А вот еще одна физическая задачка на понимание действия третьего закона Ньютона.

Комар ударяется о лобовое стекло автомобиля. Сравните силы, действующие на автомобиль и комара.

Решение:

По третьему закону Ньютона, силы, с которыми тела действуют друг на друга, равны по модулю и противоположны по направлению. Сила, с которой комар действует на автомобиль, равна силе, с которой автомобиль действует на комара.

Читайте также:  Собор примирения - студенческий портал

Другое дело, что действие этих сил на тела сильно отличаются вследствие различия масс и ускорений.

Исаак Ньютон: мифы и факты из жизни

На момент публикации своего основного труда Ньютону было 45 лет. За свою долгую жизнь ученый внес огромный вклад в науку, заложив фундамент современной физики и определив ее развитие на годы вперед.

Он занимался не только механикой, но и оптикой, химией и другими науками, неплохо рисовал и писал стихи. Неудивительно, что личность Ньютона окружена множеством легенд.

Ниже приведены некоторые факты и мифы из жизни И. Ньютона. Сразу уточним, что миф – это не достоверная информация. Однако мы допускаем, что мифы и легенды не появляются сами по себе и что-то из перечисленного вполне может оказаться правдой.

  • Факт. Исаак Ньютон был очень скромным и застенчивым человеком. Он увековечил себя благодаря своим открытиям, однако сам никогда не стремился к славе и даже пытался ее избежать.
  • Миф. Существует легенда, согласно которой Ньютона осенило, когда на наго в саду упало яблоко. Это было время чумной эпидемии (1665-1667), и ученый был вынужден покинуть Кембридж, где постоянно трудился. Точно неизвестно, действительно ли падение яблока было таким роковым для науки событием, так как первые упоминания об этом появляются только в биографиях ученого уже после его смерти, а данные разных биографов расходятся.
  • Факт. Ньютон учился, а потом много работал в Кембридже. По долгу службы ему нужно было несколько часов в неделю вести занятия у студентов. Несмотря на признанные заслуги ученого, занятия Ньютона посещались плохо. Бывало, что на его лекции вообще никто не приходил. Скорее всего, это связано с тем, что ученый был полностью поглощен своими собственными исследованиями.
  • Миф. В 1689 году Ньютон был избран членом Кембриджского парламента. Согласно легенде, более чем за год заседания в парламенте вечно поглощенный своими мыслями ученый взял слово для выступления всего один раз. Он попросил закрыть окно, так как был сквозняк.
  • Факт. Неизвестно, как бы сложилась судьба ученого и всей современной науки, если бы он послушался матери и начал заниматься хозяйством на семейной ферме. Только благодаря уговорам учителей и своего дяди юный Исаак отправился учиться дальше вместо того, чтобы сажать свеклу, разбрасывать по полям навоз и по вечерам выпивать в местных пабах.

Дорогие друзья, помните — любую задачу можно решить! Если у вас возникли проблемы с решением задачи по физике, посмотрите на основные физические формулы. Возможно, ответ перед глазами, и его нужно просто рассмотреть. Ну а если времени на самостоятельные занятия совершенно нет, специализированный студенческий сервис всегда к вашим услугам!

В самом конце предлагаем посмотреть видеоурок на тему «Законы Ньютона».

Источник: https://Zaochnik-com.ru/blog/zakony-nyutona-dlya-chajnikov-obyasnenie-primer/

1.2.6 Закон всемирного тяготения. Сила тяжести. Зависимость силы тяжести от высоты над поверхностью планеты

Видеоурок: Закон всемирного тяготения

Лекция: Закон всемирного тяготения.  Сила тяжести. Зависимость силы тяжести от высоты над поверхностью планеты

Закон гравитационного взаимодействия

До некоторого времени Ньютон не задумывался о том, что его предположения справедливы для всех тех, находящихся во Вселенной.

Спустя некоторое время им были изучены законы Кеплера, а также законы, которых придерживаются тела, что свободно падают на поверхность Земли.

Данные мысли не были зафиксированы на бумаге, а только остались заметки про яблоко, упавшее на Землю, а также о Луне, которая вращается вокруг планеты. Он считал, что

  • все тела рано или поздно упадут на Землю;
  • они падают с одинаковым ускорением;
  • Луна двигается по окружности с постоянным периодом;
  • размеры Луны практически в 60 раз меньше, чем у Земли.

В результате всего это был сделан вывод, что все тела притягиваются друг к другу. При этом, чем больше масса тела, тем с большей силой оно притягивает к себе окружающие объекты.

В результате этого был открыт закон всемирного притяжения:

Любые материальные точки притягиваются друг к другу с силой, увеличивающейся в зависимости от роста их масс, но при этом уменьшается в квадратной пропорциональности в зависимости от расстояния между этими телами.

Сила тяжести. Вес. Закон Галилея - Студенческий портал

F – сила гравитационного притяжения

m1, m2​ – массы взаимодействующих тел, кгr – расстояние между телами (центрами масс тел), мG – коэффициент (гравитационная постоянная) ≈ 6,67*10-11 Нм2/кг2​​​Сила тяжести. Вес. Закон Галилея - Студенческий порталДанный закон справедлив в том случае, когда тела можно принять за материальные точки, а вся их масса сконцентрирована в центре.

Коэффициент пропорциональности из закона всемирного тяготения был определен экспериментальным путем ученым Г.Кавендишем. Гравитационная постоянная равна силе, с которой притягиваются килограммовые тела на расстоянии одного метра:

G = 6,67*10-11 Нм2/кг2

Взаимное притяжение тел объясняется гравитационным полем, подобным электрическому, которое находится вокруг всех тел.

Сила тяжести

Вокруг Земли также существует такое поле, его еще называют полем земного притяжения. Все тела, что находятся в местах его действия, притягиваются к Земле.

Сила тяжести — это равнодействующая гравитационной силы, а также центростремительной силы, направленной по оси вращения.

Сила тяжести. Вес. Закон Галилея - Студенческий порталИменно с такой силой все планеты притягивают к себе другие тела.

Характеристика силы тяжести:

1. Точка приложения: центр масс тела.

2. Направление: к центру Земли.

3. Модуль силы определяется по формуле:

Fтяж = gmg = 9,8 м/с2 — ускорение свободного паденияm — масса тела

Так как сила тяжести — это частный случай закона гравитационного взаимодействия, то ускорение свободного падения определяется по формуле:

Сила тяжести. Вес. Закон Галилея - Студенческий портал

g — ускорение свободного падения, м/с2

G — гравитационная постоянная, Нм2/кг2​​​M3 — масса Земли, кгR3 — радиус Земли

Из этого можно сделать вывод: 

  • чем больше масса космического объекта, тем больше ускорение свободного падения; 
  • чем больше расстояние до космического объекта, тем меньше ускорение свободного падения. 

Более того, на данную величину влияет и период вращения планеты вокруг оси.

Если тело находится на некотором расстоянии от поверхности Земли, то определить ускорение можно по следующей формуле:

Сила тяжести. Вес. Закон Галилея - Студенческий портал

Если же с увеличением высоты уменьшается ускорение, то можно сделать вывод, что сила тяжести так же уменьшается.

Сила тяжести. Вес. Закон Галилея - Студенческий портал

Предыдущий урок Следующий урок

Источник: https://cknow.ru/knowbase/86-tema-126-zakon-vsemirnogo-tyagoteniya-sila-tyazhesti-zavisimost-sily-tyazhesti-ot-vysoty-nad-poverhnostyu-planety.html

Свободное падение тел. Ускорение свободного падения — Класс!ная физика

Свободное падение — это движение тел только лишь под действием притяжения Земли ( под действием силы тяжести)

В условиях Земли падение тел считается условно свободным, т.к. при падении тела в воздушной среде всегда возникает еще и сила сопротивления воздуха.

Идеальное свободное падение возможно лишь в вакууме, где нет силы сопротивления воздуха, и независимо от массы, плотности и формы все тела падают одинаково быстро, т. е. в любой момент времени тела имеют одинаковые мгновенные скорости и ускорения.

Наблюдать идеальное свободное падение тел можно в трубке Ньютона, если с помощью насоса выкачать из неё воздух.

Сила тяжести. Вес. Закон Галилея - Студенческий портал

В дальнейших рассуждениях и при решении задачпренебрегаем силой трения о воздух и считаем падение тел в земных условиях идеально свободным.

УСКОРЕНИЕ СВОБОДНОГО ПАДЕНИЯ

Сила тяжести. Вес. Закон Галилея - Студенческий портал

При свободном падении все тела вблизи поверхности Земли независимо от их массы приобретают одинаковое ускорение, называемое ускорением свободного падения. Условное обозначение ускорения свободного падения — g.

  • Ускорение свободного падения на Земле приблизительно равно : g = 9,81м/с2.
  • Ускорение свободного падения всегда направлено к центру Земли.

Вблизи поверхности Земли величина силы тяжести считается постоянной, поэтому свободное падение тела — это движение тела под действием постоянной силы. Следовательно, свободное падение — это равноускоренное движение. Вектор силы тяжести и создаваемого ею ускорения свободного падения направлены всегда одинаково.

  1. Все формулы для равноускоренного движения применимы для свободного падения тел.
  2. Величина скорости при свободном падении тела в любой момент времени:

перемещение тела:

Сила тяжести. Вес. Закон Галилея - Студенческий портал

  • В этом случае вместо ускорения а, в формулы для равноускоренного движения вводится ускорение свободного падения g =9,8м/с2.
  • ___
  • В условиях идеального падения падающие с одинаковой высоты тела достигают поверхности Земли, обладая одинаковыми скоростями и затрачивая на падение одинаковое время.

При идеальном свободном падении тело возвращается на Землю со скоростью, величина которой равна модулю начальной скорости.

Время падения тела равно времени движения вверх от момента броска до полной остановки в наивысшей точке полета.

Только на полюсах Земли тела падают строго по вертикали. Во всех остальных точках планеты траектория свободно падающего тела отклоняется к востоку за счет силы Кариолиса, возникающей во вращающихся системах (т.е. сказывается влияние вращения Земли вокруг своей оси).

ЗНАЕШЬ ЛИ ТЫ

Сила тяжести. Вес. Закон Галилея - Студенческий портал

Лишь итальянскому ученому Галилео Галилею удалось установить, что траекторией тела, брошенного под углом к горизонту в безвоздушном пространстве, является парабола. А итальянец Тарталья (1500 – 1557г.), даже не зная законов движения, пришел к выводу, что наибольшей дальности стрельбы можно достичь, если наклонить орудие к горизонту под углом 45 градусов.

  1. ___
  2. Минимальная скорость, которую достаточно сообщить брошенному вертикально вверх телу для того, чтобы оно не вернулось обратно, называют второй космической скоростью.
  3. ЗАГЛЯНИ НА КНИЖНУЮ ПОЛКУ

1. А что ты знаешь о падающих кошках? 2. А помнишь ли ты переход Суворова через Альпы? 3. Галилео Галилей (из книги Я.Голованова «Этюды об ученых») 4. Наш закон бутерброда. 5.Сколько весит тело, когда оно падает? 6.Из пушки на Луну. 7.Сверхдальняя стрельба. 8.Затяжной прыжок парашютиста.

  • А КАКОВО ПАДЕНИЕ ТЕЛ В РЕАЛЬНЫХ УСЛОВИЯХ?
  • Если выстрелить из ружья вертикально вверх, то, учитывая силу трения о воздух, свободно падающая с любой высоты пуля приобретет у земли скорость не более 40 м/с.
  • ___

В реальных условиях из-за наличия силы трения о воздух механическая энергия тела частично переходит в тепловую. В результате максимальная высота подъема тела оказывается меньше, чем могла бы быть при движении в безвоздушном пространстве, а в любой точке траектории при спуске скорость оказывается меньшей, чем скорость на подъеме.

___

При наличии трения падающие тела имеют ускорение, равное g, только в начальный момент движения. По мере увеличения скорости ускорение уменьшается, движение тела стремится к равномерному.

  1. ХОЧЕШЬ ПОИГРАТЬ?
  2. — жми здесь.
  3. СДЕЛАЙ САМ
  4. Как ведут себя падающие тела в реальных условиях?

Опыт1 Возьмите небольшой диск из пластмассы, толстого картона или фанеры. Вырежьте из обычной бумаги диск такого же диаметра. Поднимите их, держа в разных руках, на одинаковую высоту и одновременно отпустите. Тяжелый диск упадет быстрее, чем легкий. На каждый диск действует при падении одновременно две силы: сила тяжести и сила сопротивления воздуха.

В начале падения равнодействующая силы тяжести и силы сопротивления воздуха будет больше у тела с большей массой и ускорение более тяжелого тела будет больше.

По мере увеличения скорости тела сила сопротивления воздуха увеличивается и постепенно сравнивается по величине с силой тяжести, падающие тела начинают двигаться равномерно, но с разной скоростью ( у более тяжелого тела скорость выше).

Аналогично движению падающего диска можно рассматривать движение падающего вниз парашютиста при прыжке с самолета с большой высоты.

Читайте также:  Философия в византии (iv—xv века) - студенческий портал

Сила тяжести. Вес. Закон Галилея - Студенческий портал

Опыт 2

Положите легкий бумажный диск на более тяжелый пластмассовый или фанерный, поднимите их на высоту и одновременно отпустите. В этом случае они будут падать одновременно. Здесь сопротивление воздуха действует только на тяжёлый нижний диск, а сила тяжести сообщает телам равные ускорения в независимости от их масс.

ПОЧТИ АНЕКДОТ

Парижский физик Ленорман, живший в 18 веке, взял обычные дождевые зонты, закрепил концы спиц и прыгнул с крыши дома. Затем ободренный успехом он изготовил уже специальный зонт с плетеным сиденьем и кинулся вниз с башни в Монпелье. Внизу его окружили восторженные зрители. Как называется ваш зонт? Парашют! — ответил Ленорман ( буквальный перевод этого слова с французского — «против падения»).

ИНТЕРЕСНО

Если Землю просверлить насквозь и бросить туда камень, что будет с камнем? Камень будет падать, набрав посередине пути максимальную скорость, дальше полетит по инерции и достигнет противоположной стороны Земли, причем его конечная скорость будет равна начальной.

Ускорение свободного падения внутри Земли пропорционально расстоянию до центра Земли. Камень будет двигаться как груз на пружинке, по закону Гука.

Если начальная скорость камня равна нулю, то период колебания камня в шахте равен периоду обращения спутника вблизи поверхности Земли, независимо от того, как прорыта прямая шахта: через центр Земли или по любой хорде.

___

Знаменитая «падающая» башня — это колокольня собора в городе Пизе, часть редкостного по своей красоте архитектурного ансамбля. Благодаря своему конструктивному изъяну она известна во всем мире.

Башня достигает в высоту 55 метров, а надпись на ней свидетельствует, что заложена она в 1174 году. В 1564 году в Пизе родился Галилео Галилей, будущий знаменитый ученый. Судя по его собственным рассказам, он использовал Пизанскую башню для своих опытов.

С верхнего ее этажа он бросал различные предметы, чтобы доказать, что скорость падения не зависит от веса падающего тела.

Всем отдыхать! Свободно падаем … расслабляемся …

Следующая страница «Закон всемирного тяготения»

Динамика — Класс!ная физика

Инерциальные системы отсчета.

Первый закон Ньютона — Второй закон Ньютона — Третий закон Ньютона — Свободное падение тел — Закон всемирного тяготения — Ускорение свободного падения на Земле и других небесных телах — Криволинейное движение.

Равномерное движение тела по окружности — Искусственные спутники Земли (ИСЗ) — Импульс тела. Закон сохранения импульса — Реактивное движение в природе — Реактивное движение в технике. Реактивные двигатели — Закон Гука

Источник: http://class-fizika.ru/9_13.html

Закон всемирного тяготения. Сила тяжести

ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ.
Открыт Ньютоном в 1667 году на основе анализа движения планет (з-ны Кеплера) и, в частности, Луны. В этом же направлении работали Р.Гук (оспаривал приоритет) и Р.Боскович.
Все тела взаимодействуют друг с другом с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними.

Закон справедлив для:

  1. Однородных шаров.
  2. Для материальных точек.
  3. Для концентрических тел.

Гравитационное взаимодействие существенно при больших массах.

  • Примеры:      
  •  Притяжение электрона к протону в атоме водорода   » 2×10-11 Н.
  • Тяготение между Землей и Луной» 2×1020 Н.
  • Тяготение между Солнцем и Землей » 3,5×1022 Н.
Применение:

  1. Закономерности движения планет и их спутников. Уточнены законы Кеплера.
  2. Космонавтика. Расчет движения спутников.
Внимание!:

  1. Закон не объясняет причин тяготения, а только устанавливает количественные закономерности.
  2. В случае взаимодействия трех и более тел задачу о движении тел нельзя решить в общем виде. Требуется учитывать «возмущения», вызванные другими телами (открытие Нептуна Адамсом и Леверье в 1846 г. и Плутона в 1930).
  3. В случае тел произвольной формы требуется суммировать взаимодействия между малыми частями каждого тела.
Анализ закона:

  1. Сила направлена вдоль прямой, соединяющей тела.
  2. G — постоянная всемирного тяготения (гравитационная постоянная). Числовое значение зависит от выбора системы единиц.
В Международной системе единиц (СИ)        G=6,67.10-11. G=6,67.10-11
Впервые прямые измерения гравитационной постоянной провел Г. Кавендиш с помощью крутильных весов в 1798 г.

Сила тяжести. Вес. Закон Галилея - Студенческий портал
  1. Пусть m1=m2=1 кгR=1 м, тогда: G=F (численно).
  2. Физический смысл гравитационной постоянной:
  3. гравитационная постоянная численно равна модулю силы тяготения, действующей между двумя точечными телами массой по 1 кг каждое, находящимися на расстоянии 1 м друг от друга.
То, что гравитационная постоянная G очень мала показывает, что интенсивность гравитационного взаимодействия мала.
СИЛА ТЯЖЕСТИ
Сила тяжести — это сила притяжения тел к Земле (к планете).
 — из закона Всемирного тяготения. (где — масса планеты, m — масса тела, R — расстояние до центра планеты).
 — сила тяжести из второго закона Ньютона (где m — масса тела, g — ускорение силы тяжести).
  — ускорение силы тяжести не зависит от массы тела (опыты Галилея). g0=9,81 м/с2 — на поверхности Земли
Если обозначить R0 радиус планеты, а — расстояние до тела от поверхности планеты, то: Сила тяжести. Вес. Закон Галилея - Студенческий портал Сила тяжести. Вес. Закон Галилея - Студенческий портал
Ускорение силы тяжести зависит:

  1. Массы планеты.
  2. Радиуса планеты.
  3. От высоты над поверхностью планеты.
  4. От географической широты (на полюсах — 9,83 м/с2. на экваторе — 9,79 м/с2.
  5. От залежей полезных ископаемых.
Сила тяжести. Вес. Закон Галилея - Студенческий портал

Источник: https://www.eduspb.com/node/1725

Закон всемирного тяготения. Сила тяжести. Невесомость

Сила тяжести. Вес. Закон Галилея - Студенческий порталМежду любыми телами в природе существует сила взаимного притяжения, называемая силой всемирного тяготения (или силами гравитации). Закон всемирного тяготения был открыт Исааком Ньютоном в 1682 году. Когда еще ему было 23 года он высказал предположение, что силы, удерживающие Луну на ее орбите, той же природы, что и силы, заставляющие яблоко падать на Землю.

Закон всемирного тяготенияВсе тела притягиваются друг к другу с силой прямо пропорциональной произведению масс этих  тел и обратно пропорциональной квадрату расстояния между ними. 

где F — сила всемирного тяготения, m1 , m2 массы тел, R – расстояние между телами. Коэффициент пропорциональности G одинаков для всех тел в природе. Его называют гравитационной постоянной

Физический смысл гравитационной постоянной:    гравитационная постоянная численно равна модулю силы тяготения, действующей между двумя точечными телами массой по 1 кг каждое, находящимися на расстоянии 1 м друг от друга.

Сила тяжести. Вес. Закон Галилея - Студенческий порталопыт Кавендиша

G = 6,67· 10-11 Н м2/кг2 . Впервые прямые измерения гравитационной постоянной провел Г. Кавендиш с помощью крутильных весов в 1798г.

  • Для тел, находящихся вблизи поверхности планет (в частности Земли) частным случаем проявления силы тяготения является сила тяжести:   где    gускорение свободного падения, g = 9,8 м/с2 
  • Сила тяжести – это сила, с которой Земля притягивает тело, находящееся на её поверхности или вблизи этой поверхности.

Сила тяжести (mg) направлена вертикально строго к центру Земли; в зависимости от расстояния до поверхности земного шара ускорение свободного падения различно. У поверхности Земли в средних широтах значение его составляет около 9,8 м/с2 . по мере удаления от поверхности Земли g уменьшается.

Вес тела (сила веса) – это сила, с которой тело действует нагоризонтальную опору или растягивает подвес. При этом предполагается, что тело неподвижно относительно опоры или подвеса. Пусть тело лежит на неподвижном относительно Земли горизонтальном столе. Обозначается буквой Р.

Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу. 

Если ускорение  а = 0, то вес равен силе, с которой тело притягивается к Земле, а именно  .  [P] = Н.

Если другое состояние, то вес меняется:

  • если ускорение  а не равно , то вес  Р = mg — ma (вниз) или Р = mg + ma (вверх);
  • если тело падает свободно или движется с ускорением свободного падения, т.е. а = g (рис.2), то вес тела равен (Р=0). Состояние тела, в котором его вес равен нулю, называется невесомостью.

В невесомости находятся и космонавты. В невесомости на мгновение оказываетесь и вы, когда подпрыгиваете во время игры в баскетбол или танца.

Домашний эксперимент: Пластиковая бутылка с отверстием у дна наполняется водой. Выпускаем из рук с некоторой высоты. Пока бутылка падает, вода из отверстия не вытекает.

Сила тяжести. Вес. Закон Галилея - Студенческий порталВес тела движущегося с ускорением (в лифте)
Сила тяжести. Вес. Закон Галилея - Студенческий порталТело в лифте испытывает перегрузки

Источник: http://kaplio.ru/zakon-vsemirnogo-tyagoteniya-sila-tyazhesti-nevesomost/

Закон падения тел

Ньютон, так же как и Галилей, начал исследования механического движения с изучения закона падения тел, но его задача была уже несколько проще. В распоряжении Ньютона имелся воздушный насос, о котором Галилей мог только мечтать. Сила тяжести. Вес. Закон Галилея - Студенческий портал

Трубка Ньютона

Свои опыты Галилей проводил, бросая с Пизанской башни железные ядра, (подробнее: Галилей о свободном падении тел). Ньютон взял длинную стеклянную трубку, запаянную с одного конца, положил в нее маленький кусочек пробки и дробинку и присоединил трубку к воздушному насосу. Насос выкачал большую часть воздуха.

Ученый запаял второй конец трубки. И дробинка с кусочком пробки осталась в сильно разреженном воздушном пространстве. Ньютон поворачивал трубку то одним концом вверх, то другим — кусочек пробки и дробинка падали вниз с равной скоростью.

Так удалось доказать, что в пустоте предметы разного веса падают с одинаковой скоростью. Теперь эти простенькие приборы — «трубки Ньютона» — имеются в каждой школе. Сила тяжести. Вес. Закон Галилея - Студенческий портал

Скорость падения не зависит от веса

Скорость падения не зависит от веса. Падающие предметы веса не имеют, (подробнее: Вес падающего тела), говорил еще Галилей. Значит, сделал вывод Ньютон, вес — это не коренное свойство всех предметов или веществ. Весом любые предметы обладают лишь до тех пор, пока они на чем-либо лежат или висят, а когда падают — лишаются веса.

Что такое вес

Один из предшественников Ньютона — французский философ-математик Рене Декарт утверждал, что вес — это давление, которое оказывают вещи на землю или на подставку, на которой они лежат.

Ньютон вспомнил опыты Галилея с ведрами.

Пока вода переливалась из одного ведра в другое, их общий вес был меньше, чем раньше, — падающая вода двигалась свободно, ее ничто не задерживало, она действительно ничего не весила во время падения.

Как только вся вода оказывалась в нижнем ведре, равновесие весов восстанавливалось. И это тоже не удивляло Ньютона. Раз вся вода собралась в нижнем ведре, то и давление ее на дно должно в точности равняться сумме давлений воды в двух ведрах. Вода как бы снова обрела свой вес.

Почему тела давят на подставку

Но почему тела давят на подставку? Этого Декарт не знал. Возьмем гирю и подвесим ее на пружине. Пружина растянется. Теперь снимем эту гирю и возьмемся рукой за крючок пружины.

Мы можем, приложив усилие, растянуть пружину настолько же, насколько ее растягивала своей тяжестью гиря. Тяжесть гири и сила руки оказывают на пружину одинаковое действие.

Значит, причиной давления тел на подставку — их вес — является какая-то сила. Ее определил Ньютон.

Закон всемирного тяготения

Это земной шар притягивает к себе гирю и другие тела, удерживая их возле себя. Мы всюду и везде наблюдаем это явление и называем его тяготением. Изучением силы тяжести и ускорения свободного падения также занимался Галилей.

Все тела, и большие и маленькие, притягиваются друг к другу, подчиняясь закону всемирного тяготения, открытому Ньютоном. Итак, вес — сила, с которой предметы, притягиваемые Землей, давят на удерживающие их подставки. Вес — проявление всемирного тяготения.

Ньютон смог довести до логического завершения закон падения тел, которому положил начало Галилео ГалилеЙ.

Источник: https://LibTime.ru/physicist/zakon-padeniya-tel.html

Ссылка на основную публикацию
Adblock
detector