Виды связи в реляционной модели данных — студенческий портал

Виды связи в реляционной модели данных - Студенческий портал
В этой статье мы изучим особенности и структуру реляционных данных, а также увидим пример создания этих БД. Рассмотрим проектирование, составим концептуальную модель данных. Узнаем, что такое объект и нормализация данных, обсудим, на что обратить внимание на этапе проектирования баз данных. Скучно не будет!

Таблица как важная часть реляционной БД

Всем известно, что реляционная база данных состоит из таблиц. При этом каждая таблица включает в себя столбцы (поля либо атрибуты) и строки (записи либо кортежи).

Таблицы в таких БД обладают следующими свойствами:
— столбцы размещаются в определённом порядке, формируемом при создании таблицы. Таблица может не иметь ни одной строки, однако хотя бы один столбец должен быть обязательно;
— в таблице не может быть 2-х одинаковых строк. Если вспомнить математику, то такие таблицы называют отношениями (relation).

Именно поэтому данные БД и считаются реляционными;
— каждый столбец в пределах таблицы имеет уникальное имя, а все значения в одном столбце должны быть одного типа (дата, текст, число и т. п.);
— на пересечении строки и столбца может быть только атомарное значение (значение, не состоящее из группы значений).

Таблицы, которые удовлетворяют этим условиям, считаются нормализованными.

Приведём пример

Допустим, вы хотите создать базу данных для интернет-форума. На форуме есть зарегистрированные пользователи, создающие темы и оставляющие сообщения в данных темах. Вся эта информация и должна размещаться в базе данных.

Виды связи в реляционной модели данных - Студенческий портал
Виды связи в реляционной модели данных - Студенческий портал
Виды связи в реляционной модели данных - Студенческий портал

А ещё давайте вспомним о том, что каждое сообщение должно относиться к какой-нибудь теме. Для решения этого вопроса в реляционных базах данных используют ключи.

Ключи в БД

Первичный ключ (РК, primary key) — столбец, значения которого различны во всех строках. РК бывают логические (естественные) и суррогатные (искусственные).

Например, для таблицы «Пользователи» первичным ключом может быть столбец e-mail, т. к. не бывает 2-х пользователей с одним и тем же e-mail.

На практике для хранения и обработки данных рекомендуют применять суррогатные ключи (их использование позволит абстрагировать РК от реальных данных). Это важно, если пользователь, вдруг, сменит e-mail, а ведь первичные ключи нельзя менять.

Суррогатный ключ — это дополнительное поле в БД. Обычно это уникальный id (порядковый номер записи), хотя принцип может быть и другой, главное — уникальность.

Вносим первичные ключи в наши таблицы:
Виды связи в реляционной модели данных - Студенческий портал
Виды связи в реляционной модели данных - Студенческий портал Виды связи в реляционной модели данных - Студенческий портал

Виды связи в реляционной модели данных - Студенческий портал

Теперь становится ясно, что сообщение id=2 относится к теме «О рыбалке» (id=4), которая создана Васей, а остальные принадлежат теме «О рыбалке», созданной Кириллом (id=1).

Такое поле будет называться внешний ключ (FK, foreign key). При этом каждое значение данного поля сопоставляется с каким-либо первичным ключом из таблицы «Темы».

В результате устанавливается однозначное соответствие между темами и сообщениями.

Виды связи в реляционной модели данных - Студенческий портал
Виды связи в реляционной модели данных - Студенческий портал

Итак, наша база данных фактически готова. Схематично она выглядит так:

В этой небольшой базе данных лишь 3 таблицы. А что делать, если их 10 либо 200? Ясно, что всё не так просто. Именно поэтому любое проектирование реляционных баз данных начинается с разработки концептуальной модели данных.

Концептуальная модель базы данных

Под концептуальной моделью понимают отражение предметной области для разрабатываемой базы данных. Если не вдаваться в теорию, то речь идёт о некой диаграмме с общепринятыми обозначениями:
— вещи обозначаются прямоугольниками;
— атрибуты объекта овалами;
— связи в таблицах ромбами;
— мощность и направление связей стрелками (одинарными, двойными).

Простой пример — интернет-магазин. В нём есть товары, поставляемые поставщиками и заказываемые покупателями. Это три объекта и две связи:

Делая поставку, поставщик подтверждает её документами. Аналогично и с покупателем. Таким образом, и поставку, и покупку можно рассматривать в качестве самостоятельных объектов.

Итого 5 объектов и 4 связи. Из них:
— 2 связи типа «один ко многим» (один поставщик может делать несколько поставок; один покупатель может делать несколько покупок);
— 2 связи типа «многие ко многим» (каждая поставка может включать несколько товаров, причём одинаковый товар может быть в нескольких поставках; аналогичная ситуация по линии «Покупка — Товар»).

Но давайте вспомним, что связи типа «многие ко многим» недопустимы в реляционных моделях данных, поэтому такие связи надо менять на связи типа «один ко многим». Делаем это, добавляя промежуточный объект:

Видим, что в структуре появились ещё 2 объекта — «Журнал поставок» и «Журнал покупок» со связями типа «один ко многим» (каждый журнал может включать несколько поставок/покупок, но каждая поставка/покупка включает лишь один журнал).

Атрибуты таблицы

Каждый объект интернет-магазина имеет свои атрибуты:

В результате мы создали концептуальную модель будущей базы данных. Точнее говоря, речь идёт лишь о части БД, т. к. мы не учли склады, сотрудников и т. п.

Собственно, при обширной предметной области данные лучше разбить на несколько локальных областей. Как правило, объём должен быть в пределах 5-7 объектов. И лишь после создания локальных моделей выполняется их объединение в общую сложную схему.

В нашем случае ограничимся созданной моделью. Однако теперь давайте преобразуем её в реляционную модель данных.

Проектирование реляционной базы данных. Преобразование модели в реляционную

Преобразование концептуальной модели данных в реляционную — важная часть проектирования БД. Процесс включает в себя:
— построение набора предварительных таблиц;
— указание РК;
— выполнение нормализации.

Из набора таблиц состоят наши объекты, а из полей таблиц — атрибуты объектов:

Итак, мы определились с таблицами, полями, РК и FK. Следует отметить, что в таблицах «Журнал покупок» и «Журнал поставок» РК составные, т. к. состоят из 2-х полей.

Что касается нормализации, то под ней понимают обратимый и пошаговый процесс, при котором исходная схема меняется другой схемой, в которой таблицы характеризуются более простой и логичной структурой. Это нужно по следующим причинам:
1. Устранение избыточности данных. Вспомним нашу таблицу:

Очевидно, что в поле «Темы» одни и те же названия встречаются регулярно. Для хранения таких данных нужны дополнительные ресурсы памяти.

Кроме того, при дублировании данных можно допустить ошибку во время ввода значений атрибута, вследствие которой БД перейдёт в состояние несогласованности. 2. Устранение различных аномалий, связанных с обновлением, удалением, модификацией и пр.

Пример аномалии модификации — чтобы поменять название темы, нам придётся смотреть все строки и менять название в каждой из них.

Нормализация бывает:
— 1-й нормальной формы (1НФ);
— 2НФ;
— 3НФ;
— НФБК (нормальной формы Бойса-Кодда);
— 4НФ;
— 5НФ.

Каждая форма накладывает определённые ограничения на данные разного уровня. В ходе нормализации база данных становится всё строже, подверженность аномалиям снижается.

Если говорить о реляционных базах данных, то минимум — это 1НФ.

Однако в процессе проектирования специалисты по СУБД стремятся нормализовать базу хотя бы до уровня 3НФ, исключив тем самым избыточность данных и аномалии.

Это важно, если мы стремимся получить качественный результат проектирования. Однако подробное описание нормализации данных выходит за рамки нашей статьи, поэтому давайте просто посмотрим, как будет выглядеть наша база на уровне 3НФ:

Итак, в процессе проектирования мы преобразовали концептуальную модель в реляционную. Следующий этап — реализация её в конкретной СУБД. Для этого потребуется как сама СУБД, так и знание языка SQL. Например, прекрасно подойдёт СУБД MySQL или какая-нибудь другая СУБД.

Подводим итоги проектирования

Проектирование БД — процесс небыстрый и достаточно трудоёмкий. Во время проектирования надо хорошо знать предметную область, учитывать все нюансы. Вся информация должна отображаться в виде таких элементов, как объекты, атрибуты, связи, причём проектирование успешно лишь тогда, когда всё сделано максимально рационально.

Вообще, взгляды на проектирование среди разработчиков могут различаться. Некоторые игнорируют теорию, руководствуясь лишь опытом и здравым смыслом. Другие во время проектирования отводят главную роль интуиции, считая проектирование искусством, которым владеют далеко не все. Как бы там ни было, знания никогда не бывают лишними.

Да, реляционная база данных — это не более чем хранилище, где хранятся данные. Однако от того, как грамотно вы его организуете, будет зависеть стабильность работы всего приложения, где используются эти самые данные.

В заключение, добавим, что умение проектировать базы вам никогда не помешает. А научиться всему этому вы сможете на нашем курсе «Реляционные СУБД». Ждём вас!

Источник: https://otus.ru/nest/post/589/

Презентация Модели данных и типы связей

Виды связи в реляционной модели данных - Студенческий портал

Виды связи в реляционной модели данных - Студенческий портал

Виды связи в реляционной модели данных - Студенческий портал

Виды связи в реляционной модели данных - Студенческий портал

Виды связи в реляционной модели данных - Студенческий портал

Виды связи в реляционной модели данных - Студенческий портал

Виды связи в реляционной модели данных - Студенческий портал

Виды связи в реляционной модели данных - Студенческий портал

Виды связи в реляционной модели данных - Студенческий портал

Виды связи в реляционной модели данных - Студенческий портал

Описание презентации по отдельным слайдам:

1 слайд Описание слайда:

Типы моделей данных

2 слайд Описание слайда:

Модель данных — это основа, на которую опирается та или иная база данных, и определяющая связи между данными.

3 слайд Описание слайда:

Иерархическая модель данных Строится по принципу иерархии типов объектов, т. е. один тип объекта является главным, а остальные подчиненными. Узел дерева — это совокупность атрибутов, описывающих объект.

4 слайд
5 слайд Описание слайда:

Сетевая модель данных Понятие главного и подчиненного объекта несколько расширено. Любой объект может быть главным и подчиненным. Каждый объект может участвовать в любом числе взаимодействий.

6 слайд Описание слайда:

Пример Преподаватель 1 Преподаватель 2 Преподаватель 3 Студент 4 Студент 3 Студент 2 Студент 1

7 слайд Описание слайда:

Реляционная модель данных В реляционной модели данных объекты и взаимодействия между ними представляются с помощью таблиц. Каждая таблица должна иметь первичный ключ. Реляционная модель данных является наиболее популярной. На ее идеологии построены СУБД: FoxPro, Acсess, Visual C++ и др.

8 слайд Описание слайда:

Пример Таблица «Сотрудник» Таблица «Отдел» Первичный ключ Первичный ключ Внешний ключ № пропуска Фамилия Должность Название отдела Телефон Название отдела Расположение отдела Назначение отдела

9 слайд Описание слайда:

Типы отношений в таблицах

10 слайд Описание слайда:

Источник: https://infourok.ru/prezentaciya-modeli-dannih-i-tipi-svyazey-1973711.html

Реляционные базы данных — определение, структура, примеры

Виды связи в реляционной модели данных - Студенческий порталВиды связи в реляционной модели данных - Студенческий портал

Виды связи в реляционной модели данных - Студенческий портал

Особенности реляционных БД

БД используются для организации хранения данных. Структура реляционной базы данных полностью определяется перечнем названия полей с указанием их типов и свойств. Все записи имеют одинаковые поля, но в них показываются разные свойства объекта. Аналогом реляционной БД считается двумерная таблица. Характерные особенности файла БД:

Виды связи в реляционной модели данных - Студенческий портал

  1. Уникальное имя для каждой таблицы.
  2. Фиксированное число полей.
  3. На пересечении строки и столбца всегда есть только одно значение.
  4. Записи отличаются друг от друга хотя бы одним значением элемента.
  5. Полям присваиваются индивидуальные имена.
  6. В каждый из столбцов необходимо вставлять однородные данные: целые числа, даты, суммы, имена или фамилии, названия предметов.

Реляционная БД чаще всего не ограничивается одной таблицей. Обычно создаются несколько таблиц со связанной информацией. Это позволяет исполнять более сложные операции над данными.

Таблицы реляционной БД обязаны соответствовать требованиям понятия нормализации отношений, то есть ограничениям на формирование, которые позволят избежать дублирования и обеспечат непротиворечивость хранимой информации. Пусть создана таблица «Прокат», содержащая следующие поля: Шифр Клиента, Ф. И. О.

, Вид устройства, Дата выдачи, Оплата, Срок возврата. Эта организация хранения информации имеет несколько недостатков:

  • дублирование информации (вид устройства повторяется для разных клиентов), что увеличивает объём БД;
  • для обновления информации требуется обрабатывать каждую запись.

Для устранения этих недостатков необходима нормализация с разделением данных на разные таблицы.

Читайте также:  Общие признаки средневековой философии - студенческий портал

Связывание таблиц

Для любой таблицы реляционной БД задаётся первичный ключ (primary key) — поле или сочетание полей, которые определяют каждую запись. Внешний или вторичный ключ (foreign key) — это одно или несколько полей, ссылающихся на поле primary key другой таблицы.

Виды связи в реляционной модели данных - Студенческий портал

Составной ключ называется так, потому что создаётся из нескольких полей. При образовании составных ключей не рекомендуется включать в них поля, значения которых точно определяют запись.

Например, не следует образовывать ключ, в котором находятся вместе поля «номер паспорта» и «шифр клиента», потому что оба эти атрибута однозначно определяют запись.

Поля с повторяющимися в таблице значениями тоже нельзя делать составной частью ключа. По значению ключа возможно найти только одну запись.

Ячейка — это наименьший структурный элемент, который задаёт определённое значение соответствующего поля. Таблицы связываются друг с другом, и поэтому данные могут выбираться сразу из нескольких таблиц. Связь создаётся, если в них присутствуют одинаковые поля. Типы связей:

  • один к одному;
  • один ко многим;
  • многие ко многим.

Связи «один к одному» встречаются довольно редко. «Один ко многим» применяются чаще, например, кассир продаёт много билетов. «Многие ко многим» тоже встречаются часто. Например, студент изучает много предметов.

Связи «многие ко многим» нельзя организовывать непосредственно. Для установления отношения необходимо сопоставить каждому primary key внешний ключ, который представляет собой primary key другой таблицы.

Реляционные системы базируются на теории реляционной модели, которая включает в себя три аспекта:

  • структурный — данные в базе рассматриваются как набор отношений, то есть упорядоченных пар, составленных из заголовка и полей;
  • целостности — состоит в проверке правильности согласования данных при обновлении;
  • обработки — использование операторов манипулирования таблицами, таких как реляционная алгебра и реляционное исчисление, которые генерируют новые таблицы на основании уже имеющихся.

Управление созданием и использованием БД осуществляется системами управления базами данных (СУБД).

Виды связи в реляционной модели данных - Студенческий портал

Под их руководством:

  • производится добавление, определение, удаление и поиск записей;
  • изменяются значения полей.

Для проведения этих операций организуются запросы. Итогом выполнения запросов будут либо изменения в таблицах, либо получение таблицы данных. При этом поддерживается принцип безопасности информации. Для реляционной БД основным языком управления является SQL.

Стадии и пример проектирования хранилища

Приступая к созданию базы, разработчик составляет для объектов манипулирования и их связей представление в терминах реляционной БД (таблицы, поля, записи). Проектирование проходит несколько стадий:

Виды связи в реляционной модели данных - Студенческий портал

  1. Первая стадия — это анализ требований. Разработчик должен разрешить главные проблемы: какие элементы данных будут содержаться, как и кто должен к ним обращаться.
  2. В следующей стадии проектируется логическая структура БД.
  3. В завершающей стадии проектирования логическая структура БД трансформируется в физическую. Элементы данных определяются как табличные столбцы.

Преимущества этой модели данных состоят в том, что информация отображается в удобной для пользователя форме, а для манипуляций используется развитой математический аппарат.

Примером реляционной базы данных может послужить проект оптимизации деятельности пункта проката. Требуется автоматизировать такие процедуры: учёт клиентов; регистрацию инвентаря, выданного в прокат; отслеживание даты выдачи, сроков возврата, оплаты; получение информации по этим позициям; формирование отчёта по задолженностям. Реляционная БД может быть задана в виде трёх связанных таблиц.

Используя имеющиеся данные, следует определить отношения и объекты этих отношений. Объектами будут являться клиенты и устройства. Отношения между ними состоят в том, что каждый клиент может брать в прокат одно или несколько устройств.

Виды связи в реляционной модели данных - Студенческий портал

Атрибутами для сопоставления объектов друг другу должны выступать ячейки с уникальным содержимым. В таблицах есть по одному полю с уникальными данными. В № 1 «Клиент» — это шифр клиента, а в № 3 «Склад» — шифр устройства. Это и будут primary keys. Каждая строка таблицы «Прокат» будет связывать два внешних ключа между собой:

  • Шифр Клиента — foreign key, ссылающийся на primary key в таблице «Клиент».
  • Шифр устройства — foreign key, ссылающийся на первичный ключ в таблице «Склад».

Проблемы модели

Преимущество реляционных хранилищ состоит в том, что они способны обеспечить наилучшее соотношение устойчивости, производительности, гибкости, совместимости и масштабируемости.

Реляционные БД предоставляют лёгкий доступ к составляемым отчётам и обеспечивают высокую надёжность и целостность информации из-за отсутствия избыточных данных.

Но сейчас, когда всё большее количество приложений работает с высокой нагрузкой, увеличивается значение фактора масштабируемости.

Виды связи в реляционной модели данных - Студенческий портал

Реляционные БД легко масштабируются, только когда они расположены на одном сервере.

Если потребуется увеличить количество серверов и разделить нагрузку между ними, то возрастёт сложность хранилищ, что значительно снизит возможность использовать их как платформу для мощных распределённых систем.

Поэтому приходится применять другие типы БД, которые обладают лучшей масштабируемостью и отказываться от возможностей, предоставляемых реляционными хранилищами.

Реляционная БД — это совокупность связей, которые способны структурировать данные, что даёт возможность рационального хранения и эффективного использования информационных материалов.

Источник: https://nauka.club/informatika/relyatsionnye-bazy-dannykh.html

Руководство по проектированию реляционных баз данных (7-9 часть из 15) [перевод]

Продолжение. Предыдущие части: 1-3, 4-6

7. Связь один-ко-многим.

Я уже показал вам как данные из разных таблиц могут быть связаны при помощи связи по внешнему ключу. Вы видели как заказы связываются с клиентами путем помещения customer_id в качестве внешнего ключа в таблице заказов.

Другой пример связи один-ко-многим – это связь, которая существует между матерью и ее детьми. Мать может иметь множество детей, но каждый ребенок может иметь только одну мать.

(Технически лучше говорить о женщине и ее детях вместо матери и ее детях потому, что, в контексте связи один-ко-многим, мать может иметь 0, 1 или множество потомков, но мать с 0 детей не может считаться матерью.

Но давайте закроем на это глаза, хорошо?)

Когда одна запись в таблице А может быть связана с 0, 1 или множеством записей в таблице B, вы имеете дело со связью один-ко-многим. В реляционной модели данных связь один-ко-многим использует две таблицы.

Виды связи в реляционной модели данных - Студенческий портал Схематическое представление связи один-ко-многим. Запись в таблице А имеет 0, 1 или множество ассоциированных ей записей в таблице B.

Как опознать связь один-ко-многим?

Если у вас есть две сущности спросите себя: 1) Сколько объектов и B могут относится к объекту A? 2) Сколько объектов из A могут относиться к объекту из B?

Если на первый вопрос ответ – множество, а на второй – один (или возможно, что ни одного), то вы имеете дело со связью один-ко-многим.

Примеры

Некоторые примеры связи один-ко-многим:

  • Машина и ее части. Каждая часть машины единовременно принадлежит только одной машине, но машина может иметь множество частей.
  • Кинотеатры и экраны. В одном кинотеатре может быть множество экранов, но каждый экран принадлежит только одному кинотеатру.
  • Диаграмма сущность-связь и ее таблицы. Диаграмма может иметь больше, чем одну таблицу, но каждая из этих таблиц принадлежит только одной диаграмме.
  • Дома и улицы. На улице может быть несколько домов, но каждый дом принадлежит только одной улице.

В данном случае все настолько просто, что только поэтому может оказаться трудным понимание. Возьмем последний пример с домами.

На улице ведь действительно может быть любое количество домов, но у каждого дома именно на этой улице может быть только одна улица (не берем дома, которые на практике принадлежат разным улицам, возьмем, к примеру, дом в центре улицы).

Ведь не может конкретно этот дом быть одновременно в двух местах, на двух разных улицах, а мы говорим не про какой-то абстрактный дом вообще, а про конкретный.

8. Связь многие-ко-многим

Связь многие-ко-многим – это связь, при которой множественным записям из одной таблицы (A) могут соответствовать множественные записи из другой (B). Примером такой связи может служить школа, где учителя обучают учащихся.

В большинстве школ каждый учитель обучает многих учащихся, а каждый учащийся может обучаться несколькими учителями. Связь между поставщиком пива и пивом, которое они поставляют – это тоже связь многие-ко-многим.

Поставщик, во многих случаях, предоставляет более одного вида пива, а каждый вид пива может быть предоставлен множеством поставщиков.

Обратите внимание, что при проектировании базы данных вы должны спросить себя не о том, существуют ли определенные связи в данный момент, а о том, возможно ли существование связей вообще, в перспективе.

Если в настоящий момент все поставщики предоставляют множество видов пива, но каждый вид пива предоставляется только одним поставщиком, то вы можете подумать, что это связь один-ко-многим, но… Не торопитесь реализовывать связь один-ко-многим в этой ситуации. Существует высокая вероятность того, что в будущем два или более поставщиков будут поставлять один и тот же вид пива и когда это случится ваша база данных — со связью один-ко-многим между поставщиками и видами пива – не будет подготовлена к этому.

Создание связи многие-ко-многим

Связь многие-ко-многим создается с помощью трех таблиц. Две таблицы – “источника” и одна соединительная таблица. Первичный ключ соединительной таблицы A_B – составной.

Она состоит из двух полей, двух внешних ключей, которые ссылаются на первичные ключи таблиц A и B. Виды связи в реляционной модели данных - Студенческий портал Все первичные ключи должны быть уникальными. Это подразумевает и то, что комбинация полей A и B должна быть уникальной в таблице A_B. Пример проект базы данных ниже демонстрирует вам таблицы, которые могли бы существовать в связи многие-ко-многим между бельгийскими брендами пива и их поставщиками в Нидерландах. Обратите внимание, что все комбинации beer_id и distributor_id уникальны в соединительной таблице.

Таблицы “о пиве”

Виды связи в реляционной модели данных - Студенческий портал Виды связи в реляционной модели данных - Студенческий портал

Таблицы выше связывают поставщиков и пиво связью многие-ко-многим, используя соединительную таблицу. Обратите внимание, что пиво 'Gentse Tripel' (157) поставляют Horeca Import NL (157, AC001) Jansen Horeca (157, AB899) и Petersen Drankenhandel (157, AC009). И vice versa, Petersen Drankenhandel является поставщиком 3 видов пива из таблицы, а именно: Gentse Tripel (157, AC009), Uilenspiegel (158, AC009) и Jupiler (163, AC009).

Еще обратите внимание, что в таблицах выше поля первичных ключей окрашены в синий цвет и имеют подчеркивание. В модели проекта базы данных первичные ключи обычно подчеркнуты. И снова обратите внимание, что соединительная таблица beer_distributor имеет первичный ключ, составленный из двух внешних ключей. Соединительная таблица всегда имеет составной первичный ключ.

Есть еще одна важная вещь на которую нужно знать. Связь многие-ко-многим состоит из двух связей один-ко-многим. Обе таблицы: поставщики пива и пиво – имеют связь один-ко-многим с соединительной таблицей.

Другой пример связи многие-ко-многим: заказ билетов в отеле

В качестве последнего примера позвольте мне показать как бы могла быть смоделирована таблица заказов номеров гостиницы посетителями. Виды связи в реляционной модели данных - Студенческий портал Соединительная таблица связи многие-ко-многим имеет дополнительные поля. В этом примере вы видите, что между таблицами гостей и комнат существует связь многие-ко-многим. Одна комната может быть заказана многими гостями с течением времени и с течением времени гость может заказывать многие комнаты в отеле. Соединительная таблица в данном случае является не классической соединительной таблицей, которая состоит только из двух внешних ключей. Она является отдельной сущностью, которая имеет связи с двумя другими сущностями. Вы часто будете сталкиваться с такими ситуациями, когда совокупность двух сущностей будет являться новой сущностью.

Читайте также:  Гносеология - студенческий портал

9. Связь один-к-одному

В связи один-к-одному каждый блок сущности A может быть ассоциирован с 0, 1 блоком сущности B. Наемный работник, например, обычно связан с одним офисом. Или пивной бренд может иметь только одну страну происхождения.

В одной таблице

Связь один-к-одному легко моделируется в одной таблице. Записи таблицы содержат данные, которые находятся в связи один-к-одному с первичным ключом или записью.

В отдельных таблицах

В редких случаях связь один-к-одному моделируется используя две таблицы.

Такой вариант иногда необходим, чтобы преодолеть ограничения РСУБД или с целью увеличения производительности (например, иногда — это вынесение поля с типом данных blob в отдельную таблицу для ускорения поиска по родительской таблице).

Или порой вы можете решить, что вы хотите разделить две сущности в разные таблицы в то время, как они все еще имеют связь один-к-одному. Но обычно наличие двух таблиц в связи один-к-одному считается дурной практикой.

Примеры связи один-к-одному

  • Люди и их паспорта. Каждый человек в стране имеет только один действующий паспорт и каждый паспорт принадлежит только одному человеку.

Виды связи в реляционной модели данных - Студенческий портал Проект реляционной базы данных – это коллекция таблиц, которые перелинковываются (связываются) первичными и внешними ключами. Реляционная модель данных включает в себя ряд правил, которые помогают вам создать верные связи между таблицами. Эти правила называются “нормальными формами”. В следующих частях я покажу как нормализовать вашу базу данных.

Какой же вид связи вам нужен?

Примеры связей таблиц на практике. Когда какие-то данные являются уникальными для конкретного объекта, например, человек и номера его паспортов, то имеем дело со связью один-ко-многим. Т.е. в одной таблице мы имеем список неких людей, а в другой таблице у нас есть перечисление номеров паспортов этого человека (напр.

, паспорт страны проживания и загранпаспорт). И эта комбинация данных уникальная для каждого человека. Т.е. у каждого человека может быть несколько номеров паспортов, но у каждого паспорта может быть только один владелец. Итого: нужны две таблицы.

А если есть некие данные, которые могу быть присвоены любому человеку, то имеем дело со связью многие-ко-многим. Например, есть таблица со списком людей и мы хотим хранить информацию о том, какие страны посетил каждый человек. В данном случае имеется две сущности: люди и страны.

Любой человек может посетить любое количество стран равно, как и любая страна может быть посещена любым человеком. Т.е., в данном случае, страна не является уникальными данными для конкретного человека и может использоваться повторно.

В таких случаях использование связи многие-ко-многим с использованием трех таблиц и с хранением общей информации централизованно очень удобно.

Ведь если общие данные меняются, то для того, чтобы информация в базе данных соответствовала действительности достаточно подправить ее только в одном месте, т.к.

хранится она только в одном месте (таблице), в остальных таблицах имеются лишь ссылки на нее.

А когда у вас есть набор уникальных данных, которые имеют отношение только друг к другу, то храните все в одной таблице. Ваш выбор – связь один-к-одному. Например, у вас есть небольшая коллекция автомобилей и вы хотите хранить информацию о них (цвет, марка, год выпуска и пр.).

Источник: https://habr.com/post/193380/

Типы связей в реляционных базах данных

Практически всегда БД не ограничивается одной таблицей. Сложно представить себе какой-либо бизнес-процесс на предприятии, который мог бы сконцентрироваться только на одном предмете в плане информации.

Рассмотрим пример учебной базы данных. Имеется отдел, который занимается обработкой звонков, поступающих на различные линии. Линии обслуживаются конкретными операторами. Операторы состоят в разных группах под присмотром супервайзеров.

Только из данного краткого описания можно выделить несколько самостоятельных объектов:

  • Телефонные линии обслуживания;
  • Сотрудники отдела;
  • Должности сотрудников;
  • Группы, по которым распределены сотрудники;
  • Звонки.

Виды связи в реляционной модели данных - Студенческий портал

Ознакомившись с диаграммой базы данных, можно обратить внимание на то, что некоторая информация из одних таблиц присутствует в других, т.е. между ними имеются связи.

В нашем конкретном случае, все таблицы можно соединить между собой. Чтобы понять, как это правильно сделать, необходимо рассмотреть типы связей.

Логику соединения таблиц в БД важно понять с самого начала изучения SQL, так как наверняка Вы не будете писать запросы только к одной таблице.

Всего существует 3 типа связей:

  • Один к одному;
  • Один ко многим;
  • Многие ко многим.

Примечание: В данном материале обозначения связей приводятся на примере MS SQL Server. В иных СУБД они могут обозначаться по-разному, но у Вас не должно возникнуть проблем с определением их типа, т.к. они либо очень похожи, либо интуитивно понятны.

Связь «Один к одному»

Связь один к одному образуется, когда ключевой столбец (идентификатор) присутствует в другой таблице, в которой тоже является ключом либо свойствами столбца задана его уникальность (одно и тоже значение не может повторяться в разных строках).

На практике связь «один к одному» наблюдается не часто. Например, она может возникнуть, когда требуется разделить данных одной таблицы на несколько отдельных таблиц с целью безопасности.

В учебной безе данных нет подходящего примера, но гипотетически могла бы существовать необходимость разделения таблицы сотрудников.

Пример: Представьте, что базой данных пользуются несколько менеджеров и аналитиков, а таблица «Сотрудники» содержит те же столбцы, что и учебная база. Следовательно, доступ к персональным данным может получить любой из упомянутых работников.

Виды связи в реляционной модели данных - Студенческий портал

Чтобы устранить возможность утечки конфиденциальной информации, принимается решение о переносе информации паспортных данных в отдельную таблицу, доступ к которой предоставляется ограниченному кругу лиц.

Виды связи в реляционной модели данных - Студенческий портал

Связь «Один ко многим»

В типе связей один ко многим одной записи первой таблицы соответствует несколько записей в другой таблице.

Рассмотрим связь учебной базы данных между должностями и сотрудниками, которая относится к рассматриваемому типу.

Виды связи в реляционной модели данных - Студенческий портал

Записи должностей в таблице «Должность» уникальны, так как нет смысла повторно создавать имеющуюся запись. Записи в таблице «Сотрудники» также уникальны, но несколько различных сотрудников могут находиться на одинаковой должностной позиции.

Символ ключа на конце связи указывает, что таблица, к которой этой конец прилегает, находится на стороне «один» (связанный столбец является первичным ключом), а символ бесконечности находится на стороне «многие» (такой столбец является внешним ключом).

Связь «Многие ко многим»

Если нескольким записям из одной таблицы соответствует несколько записей из другой таблицы, то такая связь называется «многие ко многим» и организовывается посредством связывающей таблицы.

В нашей базе подобное наблюдается только между таблицами с сотрудниками и линиями.

Виды связи в реляционной модели данных - Студенческий портал

Из диаграммы видно, что имеются две связи «один ко многим» (один сотрудник может обрабатывать несколько телефонных линий, и одну линию могут обрабатывать несколько сотрудников), но в совокупности они образуют связь «многие ко многим».

Для чего все это нужно?

Связи выполняют более важную роль, чем просто информация размещения данных по таблицам. Прежде всего они требуются разработчикам для поддержания целостности баз данных.

Правильно настроив связи, можно быть уверенным, что ничего не потеряется.

Представьте, что Вы решили удалить одну из групп в таблице учебной базы данных. Если бы связи не было, то для тех сотрудников, которые к ней были определены, остался идентификатор несуществующей группы.

Связь не позволит удалить группу, пока она имеется во внешних ключах других таблиц. Для начала следовало определить сотрудников в другие имеющиеся или новые группы, а только затем удалить ненужную запись.

Поэтому связи называют еще ограничениями.

Новые статьи:

Если материалы office-menu.ru Вам помогли, то поддержите, пожалуйста, проект, чтобы я мог развивать его дальше.

Источник: https://office-menu.ru/uroki-sql/41-tipy-svyazej-v-relyatsionnykh-bazakh-dannykh

Система управления базами данных SQLite. Изучаем язык запросов SQL и реляционные базы данных на примере библиотекой SQLite3. Курс для начинающих

Здравствуйте, уважаемые посетители сайта ZametkiNaPolyah.ru. Продолжаем изучать базы данных и наше знакомство с библиотекой SQLite3.

Продолжаем изучать теорию реляционных баз данных и в этой части мы познакомимся с видами и типами связей между таблицами в реляционных базах данных. Так же мы познакомимся с такими термина, как: кортеж, атрибут и отношения.

Данная тема является базовой и ее понимание необходимо для работы с базами данных и для их проектирования.

Виды связи в реляционной модели данных - Студенческий портал

Виды связей между таблицами в базе данных. Связи в реляционных базах данных. Отношения, кортежи, атрибуты.

Сразу скажу, что связей между таблицами в реляционной базе данных всего три. Поэтому их изучение, понимание и восприятие пройдет быстро, легко и безболезненно. Приступим к изучению.

Термины кортеж, атрибут и  отношение в реляционных базах данных

В своей публикации я буду стараться объяснять теорию баз данных не с математической точки зрения, а на примерах. Грубо говоря, на пальцах.

Во-первых, практические примеры позволяют легче усваивать материал. Во-вторых, с математической теорией проще разобраться, когда понимаешь суть происходящего.

Давайте разбираться с тем, что такое: отношение, кортеж, атрибут в реляционной базе данных.

Виды связи в реляционной модели данных - Студенческий портал

Таблица с данными из базы данных World

У нас есть простая таблица City из базы данных World, в которой есть строки и столбцы. Но термины: таблица, строка, столбец – это термины стандарта SQL.

Кстати: ни одна из существующих в мире СУБД не имеет полной поддержки того или иного стандарта SQL, но и ни один стандарт SQL полностью не реализует математику реляционных баз данных.

В терминологии реляционных баз данных: таблица – это отношение (принимается такое допущение), строка – это кортеж, а столбец – атрибут. Иногда вы можете услышать, как некоторые разработчики называют строки записями. Чтобы не было путаницы в дальнейшем предлагаю использовать термины SQL.

Если рассматривать таблицу, как объект (например книга), то столбец – это характеристики объекта, а строки содержат информацию об объекте.

Виды и типы связей между таблицами в реляционных базах данных

Давайте теперь рассмотрим то, как могут быть связаны таблицы в реляционных базах данных. Сразу скажу, что всего существует три вида связей между таблицами баз данных:
• связь один к одному;
• связь один ко многим;
• связь многие ко многим.

Рассмотрим, как такие связи между таблицами могут быть реализованы в реляционных базах данных.

Реализация связи один ко многим в теории баз данных

Связь один ко многим в реляционных базах данных реализуется тогда, когда объекту А может принадлежать или же соответствовать несколько объектов Б, но объекту Б может соответствовать только один объект А. Не совсем понятно, поэтому смотрим пример ниже.

Виды связи в реляционной модели данных - Студенческий портал

Реализация связи один ко многим в реляционных базах данных

У нас есть таблица, в которой содержатся данные о клиентах и у нас есть таблица, в которой хранятся их телефоны. Мы можем смело утверждать, что у одного клиента может быть несколько телефонов, но в тоже время мы можем быть уверены в том, что один конкретный номер может быть только у одного клиента. Это типичный пример связи один ко многим.

Читайте также:  Проективные методики - студенческий портал

Связь многие ко многим

Связь многие ко многим реализуется в том случае, когда нескольким объектам из таблицы А может соответствовать несколько объектов из таблицы Б, и в тоже время нескольким объектам из таблицы Б соответствует несколько объектов из таблицы А. Рассмотрим простой пример.

Виды связи в реляционной модели данных - Студенческий портал

Пример связи многие ко многим

У нас есть таблица с книгами и есть таблица с авторами. Приведу два верных утверждения. Первое: одну книгу может написать несколько авторов. Второе: автор может написать несколько книг. Здесь мы наблюдаем типичную ситуацию, когда связь между таблицами многие ко многим. Такая связь (связь многие ко многим) реализуется путем добавления третьей таблицы.

Связь один к одному

Связь один к одному – самая редко встречаемая связь между таблицами. В 97 случаях из 100, если вы видите такую связь, вам необходимо объединить две таблицы в одну.

Виды связи в реляционной модели данных - Студенческий портал

Пример связи один к одному

Таблицы будут связаны один к одному тогда, когда одному объекту таблицы А соответствует один объект таблицы Б, и одному объекту таблицы Б соответствует один объект таблицы А. Как я уже говорил: если вы видите, что связь один к одному – смело объединяйте таблицы в одну, за исключением тех случаев, когда происходит модернизация базы данных.

Например, у нас была таблица, в которой хранились данные о сотрудниках компании. Но произошли какие-то изменения в бизнес-процессе и появилась необходимость создать таблицы с теми же самыми сотрудниками, но не для всей компании, а разбив их по отделам.

Таблицы отделов будут дочерними по отношению к таблице, в которой хранятся данные обо всех сотрудниках компании, и связаны такие таблицы будут связью один к одному.

Мы рассмотрели все виды связей между таблицами и то, как они реализуются в базах данных. В дальнейшем, когда мы начнем создавать свои базы данных, информация о видах связи между таблицами нам очень поможет.

Возможно, эти записи вам покажутся интересными

Источник: https://zametkinapolyah.ru/zametki-o-mysql/chast-3-2-vidy-svyazej-mezhdu-tablicami-v-baze-dannyx-svyazi-v-relyacionnyx-bazax-dannyx-otnosheniya-kortezhi-atributy.html

Возможности реляционных баз данных

Статья посвящена самой используемой в практической деятельности базе данных — реляционной. Реляционная модель данных позволяет представлять информацию с помощью взаимосвязанных таблиц. Будут рассмотрены 3 типа связей между таблицами и приведены небольшие примеры в виде рисунков.

В наш век информационных технологий, одной из самых важных функций компьютера является хранение информации. Одними из самых распространенных средств длительного хранения и обработки информации являются базы данных.

Базой данных (БД) является информационная модель, которая содержит данные об объектах и их свойствах

Базы данных бывают нескольких видов. В данной статье будут рассмотрены вопросы, касающиеся возможностей реляционной модели базы данных, которая является наиболее применяемой на практике.

Также она отображает информацию в наиболее простой и понятной для пользователя форме.

Реляционная модель данных позволяет представлять информацию с помощью взаимосвязанных таблиц. В каждой таблице БД существует первичный ключ-это поле или набор полей, которые определяют уникальность записи. Например, если взять студентов вуза, то у каждого из них есть номер студенческого билета, который не повторяется, это и можно назвать первичным ключом.

В реляционной базе данных существует три разновидности связей между таблицами базы данных:

  • один-ко-многим» ;
  • один-к-одному» ;
  • многие-ко-многим» [3].

Отношение «один-ко-многим» имеет место, когда одной записи родительской (главной) таблицы может соответствовать несколько записей в дочерней таблиц. Например, в группе много студентов, но каждый студент принадлежит только одной группе. Связь «один-ко-многим» является самой распространенной для реляционных баз данных.

Виды связи в реляционной модели данных - Студенческий портал

Рисунок 1 Пример отношение «один-ко-многим»

Отношение «один-к-одному» имеет место, когда одной записи в родительской таблице соответствует одна запись в дочерней таблице [1].

Виды связи в реляционной модели данных - Студенческий портал

Рисунок 2 Пример отношение «один-к-одному»

Отношение «многие-ко-многим» имеет место, когда:

  1. записи в родительской таблице может соответствовать больше одной записи в дочерней таблице;
  2. записи в дочерней таблице может соответствовать больше одной записи в родительской таблице [2].

Например, каждый студент изучает несколько предметов. Каждый предмет изучается несколькими студентами.

Виды связи в реляционной модели данных - Студенческий портал

Рисунок 3 Пример отношение «многие-ко-многим»

Таким образом, с помощью реляционной базы данных возможно просто, наглядно и доступно связать данные, устранить их дублирование. Также при помощи реляционной базы данных можно собрать всю информацию в одну таблицу и связать ее с другой, создав единую базу.

Источник: https://novainfo.ru/article/7007

Виды связи в реляционной модели данных

Чаще всего БД содержит больше одной таблицы.

Рассмотрим пример.

Пример 1

Существует отдел, занимающийся обработкой звонков, которые поступают на разные линии. Линии обслуживают конкретные операторы, состоящие в различных группах, которые контролируют супервайзеры.

Таким образом, уже можно назвать некоторые самостоятельные объекты (рисунок 1):

  • Сотрудники;
  • Группы;
  • Должности;
  • Линии;
  • Звонки.

В такой базе данных некоторая информация одних таблиц располагается в других, т.е. они связаны между собой.

В рассматриваемом примере между собой можно связать все таблицы. Для правильного связывания рассмотрим типы связей.

Существует три вида связей:

  • связь «Один-к-одному»
  • связь «Один-ко-многим»
  • связь «многие-ко-многим»

Связь «Один-к-одному»

Замечание 1

Связь один-к-одному создается в случае, если ключевой столбец (идентификатор) принадлежит другой таблице, для которой также является ключевым или его уникальность задается свойствами столбца (значения в разных строках не могут повторяться).

Виды связи в реляционной модели данных - Студенческий портал

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

На практике такая связь используется редко. Например, связь «один-к-одному» может использоваться, если нужно выполнить разделение данных одной таблицы на некоторое число отдельных таблиц для обеспечения безопасности.

Пример 2

Например, пусть базу данных используют несколько аналитиков и менеджеров. Значит, любой из них может получить доступ к персональным данным, например, таблицы «Сотрудники» (рисунок 2).

Для предотвращения утечки конфиденциальной информации можно в отдельную таблицу перенести информацию о паспортных данных, а доступ к такой таблице предоставить определенному кругу сотрудников (рисунок 3).

Связь «Один-ко-многим»

Замечание 2

При связи «один-ко-многим» одна запись одной таблицы связана с несколькими записями другой таблицы.

Например, связь между должностями и сотрудниками является связью «один-ко-многим» (рисунок 4).

В таблице Должность записи должностей являются уникальными, т.к. не имеет смысла повторное создание имеющейся записи. В таблице Сотрудники записи также уникальные, но некоторые сотрудники могут занимать одинаковую должность.

Значок ключа на конце связи показывает, что таблица, к которой он прилегает, находится на стороне «один» (первичным ключом является связанный столбец), а знак бесконечности находится на стороне «многие» (этот столбец – внешний ключ).

Связь «многие-ко-многим»

Замечание 3

Когда несколько записей одной таблицы соответствуют нескольким записям другой таблицы, такую связь называют «многие-ко-многим» и организовывают с помощью связывающей таблицы.

Пример 3

Связь «многие-ко-многим» существует между таблицами Сотрудники и Линии (рисунок 5).

На рисунке 5 видно, что существует 2 связи «один-ко-многим» (одним сотрудником может обрабатываться несколько телефонных линий и одна линия может обрабатываться несколькими сотрудниками), а в совокупности получается связь «многие-ко-многим».

Назначение связей

Связи играют роль важнее информации размещения данных в таблицах. Разработчикам они необходимы для того, чтобы поддерживать целостность баз данных.

Если связи настроены правильно, можно с уверенностью сказать, что никакая информация не потеряется.

Например, нужно удалить одну группу из таблицы Группы (рисунок 1). Если бы связь не существовала, то для сотрудников, принадлежащих к этой группе, остался бы идентификатор группы, которая не существует.

Наличие связи предотвратит выполнить удаление группы, если она присутствует во внешних ключах других таблиц. В таком случае необходимо сотрудников перенести в другие группы, а потом выполнить удаление ненужной записи.

Вследствие этого связи еще называют ограничениями.

Источник: https://spravochnick.ru/bazy_dannyh/relyacionnaya_model_dannyh_osnovy_proektirovaniya_baz_dannyh/vidy_svyazi_v_relyacionnoy_modeli_dannyh/

Реляционная модель данных / Основы реляционных баз данных

Основой логики работы в реляционных СУБД является реляционная алгебра, именно поэтому в подобных системах добавляют приставку «реляционная». Если посмотреть книги, посвященные базам данных (особенно университетские), то они в обязательном порядке дают её, и иногда в больших количествах.

Несмотря на то, что прикладному программисту не обязательно разбираться в её тонкостях, знать основы реляционной алгебры, всё же, полезно. Ниже я попробую дать некоторое общее представление без привлечения соответствующего математического аппарата.

Если вы захотите копнуть глубже, то смотрите ссылки в дополнительных материалах.

Иерархическая модель

Существует множество разных способов представить одни и те же данные. Один из первых широко используемых способов — иерархическая модель. В такой модели данные представлены в виде дерева, где дочерние элементы находятся в зависимости от родительских.

Самый яркий пример древовидной структуры — файловая система (ФС). Вероятно, будет сюрпризом для вас, что файловая система — это база данных, а операционная система ведёт себя, как СУБД по отношению к ФС. Однако то, как мы видим данные и как они хранятся в реальности (на диске) — две большие разницы.

Физическое размещение данных на носителях — прерогатива конкретных СУБД, и здесь они соревнуются, кто быстрее и эффективнее. А вот их внешнее представление — это то, что видит пользователь, и оно очень сильно влияет на способ взаимодействия с данными.

Именно поэтому разные способы представления данных называются моделями. Эти модели не отражают то, что происходит на самом деле (на физическом уровне), они лишь описывают то, как данные структурированы и как с ними можно взаимодействовать.

Модели данных очень похожи на абстрактные типы данных, которые определяют интерфейс взаимодействия с типом и не определяют его внутреннюю реализацию.

С помощью иерархической модели можно представить и бизнес области. К примеру, в предметной области интернет-магазина есть такие понятия, как пользователь и заказ. Причём, у одного пользователя может быть множество заказов, что сразу определяет структуру дерева, где вершиной становится пользователь, а его детьми — заказы. Подобным образом структурируются и все остальные части.

Проблемы начинаются, когда у одного ребёнка может быть несколько родителей.

В современных сервисах такси есть возможность оплачивать счёт за такси совместно — это значит, что у одного заказа сразу несколько клиентов.

Как быть в такой ситуации? К сожалению, иерархическая модель не может предложить хорошего решения данной задачи. Придётся создавать параллельные деревья, в которых появится дублирование данных.

Сетевая модель

Эта проблема решается в сетевой модели данных, которая расширяет иерархическую возможностью иметь множество предков. По сути, сетевая модель представляет из себя граф. В сетевой структуре каждый элемент может быть связан с любым другим элементом.

Недостатком сетевой модели данных являются высокая сложность и жесткость схемы БД, построенной на её основе. Поскольку логика процедуры выборки данных зависит от физической организации этих данных, то эта модель не является полностью независимой от приложения. Другими словами, если необходимо изменить структуру данных, то нужно изменить и приложение.

Реляционная модель

Для прохождения курса необходима подписка
Получить доступ к курсу

Источник: https://ru.hexlet.io/courses/rdb-basics/lessons/relations/theory_unit

Ссылка на основную публикацию