Внешние запоминающие устройства — разновидности и принцип работы

Для хранения и переноса информации с одного компьютера на другие удобно использовать внешние носители. В качестве носителей информации чаще всего выступают оптические диски (CD, DVD, Blu-Ray), флеш-накопители (флешки) и внешние жесткие диски. В этой статье мы разберем виды внешних носителей информации и ответим на вопрос «На чем хранить данные?»

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

Внешние запоминающие устройства - Студенческий портал

Сейчас оптические диски постепенно отходят на второй план и это понятно. Оптические диски позволяют записать относительно небольшое количество информации.

Также удобство использования оптического диска оставляет желать лучше, к тому же диски можно легко повредить, поцарапать, что приводит к потере читаемости диска.

Однако для длительного хранения медиаинформации (фильмов, музыки) оптические диски подходят как никакой другой внешний носитель. Все медиацентры и видеопроигрыватели по-прежнему воспроизводят оптические диски.

Флешки

Флеш-накопители или по-простому «флешка» сейчас пользуется наибольшим спросом у пользователей. Ее малый размер и внушительные объемы памяти (до 64Гб и более) позволяют использовать для различных целей.

Чаще всего флешки подключаются к компьютеру или медиацентр через порт USB. Отличительной особенность флешек является высокая скорость чтения и записи.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Вальдорфская школа - что это такое и принципы обучения

Оценим за полчаса!

Флешка имеет пластиковый корпус, внутрь которого помещена электронная плата с чипом памяти.

Внешние запоминающие устройства - Студенческий портал

USB-флешки

К разновидностью флешек можно отнести карты памяти, которые с картриддером являются полноценной USB-флешкой. Удобство использование такого тандема позволяет хранить значительные объемы информации на различных картах памяти, которые будет занимать минимум места. К тому же вы всегда можете прочитать карту памяти вашего смартфона, фотоаппарата.

Внешние запоминающие устройства - Студенческий портал

Внешние жесткие диски

Внешние жесткие диски технически представляют собой жесткий диск, помещенный в компактный корпус с USB адаптером и системой защиты от вибрации. Как известно жесткие диски обладают впечатляющими объемами дискового пространства, что в купе с мобильностью делает их очень привлекательными.

На внешнем жестком диске вы сможете хранить всю свою видео и аудиоколлекцию. Однако для оптимальной работы внешнего жесткого диска требуется повышенная мощность питания. Один разъем USB не в силе обеспечить полноценное питание. Вот почему на внешних жестких дисках имеется двойной кабель USB.

По габаритам внешние жесткие диски совеем небольшие, и могут легко поместиться в обычном кармане.

Панель с USB 3.0 от компании Sharkoon

Внешние запоминающие устройства - Студенческий портал

HDD боксы

Существуют HDD боксы, предназначенные для использования в качестве носителя информации обычный жесткий диск (HDD). Такие боксы представляют собой коробку с контроллером USB, к которому подключаются самые простые жесткие диски стационарного компьютера.

Внешние запоминающие устройства - Студенческий портал

Таким образом, вы легко можете переносить информацию непосредственно с жесткого диска вашего компьютера напрямую, без дополнительного копирования и вставки. Такой вариант будет намного дешевле покупки внешнего жесткого диска, особенно если перенести на другой компьютер нужно почти весь раздел жесткого диска.

Не пропусти самое интересное! Подписывайтесь на нас в и

Источник: https://minterese.ru/vneshnie-nositeli-informatsii/

Информатика и вычислительная техника

Внешние запоминающие устройства (ВЗУ) являются важной составной частью ПЭВМ, обеспечивая долговременное хранение программ и данных на различных носителях информации.

Внешняя память — электронный шкаф, куда складывается информация, в которой нет нужды сейчас, но которую Вы бы не хотели потерять совсем.

ВЗУ можно классифицировать по целому ряду признаков: по виду носителя, типу конструкции, по принципу записи и считывания информации, метода доступа и т.д..

Носитель -материальный объект, способный хранить информацию

Внешние запоминающие устройства - Студенческий портал

Рис. 2. Классификация ВЗУ.

В зависимости от типа носителя информации все ВЗУ можно подразделить на накопители на магнитной ленте и дисковые накопители.

Накопители на магнитной ленте, в свою очередь, бывают двух видов: накопители на бобинной магнитной ленте (НБМЛ) и накопители на кассетной магнитной ленте (ИКМЛ — стриммеры). В ПК используются только стриммеры.

Стриммеры — устройства для записи информации на кассеты (картриджи). Они используются для создания резервных копий информации размещенной на жестких дисках компьютера. Стримеры просты в использовании и обеспечивают самое дешевое хранение данных. Емкость на одной кассете от 20 Мбайт до 40 Гбайт.

Накопители на МД (НМД) являются наиболее распространенными внешними запоминающими устройствами в ПК. Диски бывают жесткими и гибкими, сменными и встроенными в ПК. Устройство для чтения и записи информации на магнитном диске называется дисководом.

Все диски характеризуются своим диаметром, или иначе, форм фактором. Наибольшее распространение получили диски с форм факторами 3.5’’ ( т.е. 3,5 дюйма или 89 мм, часто их называют трехдюймовыми) и 5,25’’ (89 мм или пятидюймовые).

Для большинства пользователей самым необходимым является накопитель на жестком диске. В отличие от гибких дисков их нельзя согнуть отсюда и появилось название «жесткий диск» (НЖМД). Иногда НЖМД называют «винчестером».

         Термин винчестер возник из жаргонного названия первой модели жесткого диска емкостью 16 Кбайт (IBM,  1973 г.) имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром «30/30» известного охотничьего ружья «Винчестер».

В этих накопителях один или несколько жестких дисков, изготовленных из сплавов алюминия или керамики и покрытых ферролаком, вместе с блоком магнитных головок считывания/записи помещены в герметически закрытый корпус. Емкость этих накопителей благодаря чрезвычайно плотной записи, получаемых в таких несъемных конструкциях, достигает несколько тысяч мегабайт.

Первые жесткие диски для IBM PC имели емкость 5 Мбайт, сейчас в выпускаемые компьютеры чаще всего устанавливаются жесткие диски емкостью от 8 Гбайт до 60 Гбайт.

Скорость работы диска характеризуется двумя показателями: временем доступа к данным на диске и скоростью чтения записи данных на диске. В настоящее время типичное время доступа у современных дисков — около 10 — 12 мс. Более быстрые диски имеют время доступа около 7 — 8 мс.

         Скорость чтения — записи (пропускная способность ввода-вывода) зависит не только от диска, но и от его контроллера, типа шины, быстродействия процессора и т.д.

В ПК имеется обычно один, реже несколько накопителей на жестких магнитных дисках. Однако с помощью программных средств один физический диск может быть разбит на несколько «логических» дисков; тем самым имитируется несколько НМД на одном накопителе.

На гибком магнитном диске (ГМД, дискете) магнитный слой наносится на гибкую основу. Пятидюймовые дискеты помещаются в плотный гибкий конверт, а трехдюймовые — в пластмассовую кассету для защиты от пыли и механических повреждений.

Дискеты различаются друг от друга по своей емкости, т.е. количеству информации, которое на них можно записать трехдюймовые дискеты чаще всего имеют емкость 1,44 Мбайта, хотя встречаются старые дискеты емкостью 720 Кбайт.

Пятидюймовые дискеты чаще всего имеют емкость 360 Кбайт (обозначение Double Side/Double Density, DS/DD) или 1,2 Мбайта (Double Side/High Density, DS/HD).

Дискеты емкостью 360 Кбайт используются очень редко, они считаются устаревшими (точнее, еще более устаревшими, чем дискеты емкостью 1,2 Мбайта).

В последние годы появились дискеты с тефлоновым покрытием (например, Verbutim Data Life Plus),  которое предохраняет магнитное покрытие и записанную на нем информацию от грязи, воды, жира, отпечатков пальцев и даже от растворителей типа ацетона. Возможная емкость 3,5 дюймовой дискеты — 2,88 Мбайта.

В последние годы все большее распространение получают накопители на оптических дисках (НОД). Благодаря маленьким размерам (используются компакт-диски диаметром 3,5’’ и 5,25’’ ), большой емкости и надежности эти накопители становятся все более популярными.

         Неперезаписываемые  лазерно-оптические диски обычно называют компакт-дисками ПЗУ — Compact Dick CD-ROM. Эти диски обычно поставляются фирмой изготовителем с уже записанной на них информацией (в частности, с программным обеспечением).

Запись информации на них производится, лазерным лучом большой мощности, который оставляет на активном слое CD след — дорожку с микроскопическими впадинами. В фабричных условиях создается первичный «мастер-диск».

Процесс массового тиражирования CD-ROM по «мастер-диску» выполняется путем литья под давлением.

В оптическом дисководе ПК эта дорожка читается лазерным лучом существенно меньшей мощности.

         CD-ROM ввиду чрезвычайно плотной записи информации имеют емкость от 250 Мбайт до 1,5 Гбайта, время доступа в разных оптических дисках также колеблется от 30 до 300 мс, скорость считывания информации от 150 до 1500 Кбайт/с.

Перезаписываемые лазерно-оптические диски с однократной (CD-R-CD Recordable) и многократной (CD-E-CD Erasable). На этих дисках лазерный луч непосредственно в дисководе компьютера при  записи прожигает микроскопические углубления на поверхности диска под защитным слоем; чтение записи выполняется лазерным лучом; также как и у CD-ROM.

Перезаписываемые магнитооптические диски (СС-Е — Continuous Composite Erasable) используют лазерный луч для местного разогрева поверхности диска при записи информации магнитной головкой. Считывание информации выполняется лазерным лучом меньшей мощности.

Сущность процессов записи считывания обусловлена следующим. Активный слой на поверхности магнитооптического диска может быть перемагничен магнитной головкой только при высокой температуре.

Такая температура (сотни градусов) создается лазерным импульсом длительностью порядка 0,1 мкс.

При считывании информации вектор поляризации отраженного от поверхности диска лазерного луча на несколько градусов изменяет свое  направление в зависимости от направления намагниченного участка, активного слоя. Изменение направления поляризации и воспринимается соответствующим датчиком.

  •          Магнитооптические диски с однократной записью (СС  WORM — Continuous Composite Write Only Read Many) аналогичны  обычным магнитооптическим накопителям с той разницей, что в них на контрольные дорожки дисков наносятся специальные метки, предотвращающие стирание и повторную запись на диск (однократная запись — многократное чтение).
  •          В магнитооптических накопителях запись информации обычно осуществляется за два прохода, поэтому скорость записи обычно меньше скорости считывания.
  •          Емкость современных магнитооптических дисков доходит до 2,6 Гбайта (ожидается СС-Е емкостью до 5,2 Гбайта), время доступа от 15 до 150 мс, скорость считывания до 2000 Кбайт/с.
  •          Сравнительные характеристики внешних запоминающих устройств приведены в таблице.
  • Таблица сравнительная характеристика ВЗУ

Внешние запоминающие устройства - Студенческий портал

Основными достоинствами НОД являются:

  • сменяемость и компактность носителей;
  • большая информационная емкость;
  • высокая надежность и долговечность;
  • меньшая (по  сравнению с НМД) чувствительность к загрязнениям и вибрациям;
  • нечувствительность к электромагнитным полям.

Источник: https://moodle.kstu.ru/mod/book/view.php?id=11586

GOUSPO студенческий портал!

Термин “архитектура” используется в популярной литературе по вычислительной технике достаточно часто, однако определение этого понятия и его содержание могут у разных авторов достаточно различаться. Разберемся в этом вопросе более тщательно.

Начать целесообразно с происхождения термина. Слово “архитектура” в изначальном своем смысле используется в градостроении. Будучи достаточно сложной структурой, современный город состоит из районов, площадей, улиц, домов и т.п.

, расположенных определенным образом. Жителей города обычно мало интересует, как выглядит конкретный дом и из каких материалов он построен.

Зато очень важно знать район, где этот дом расположен, улицы, ведущие к нему, и транспорт, пользуясь которым можно сократить время в пути.

Для того, чтобы ориентироваться в хитросплетении улиц и площадей, в любом городе существует исторически сложившаяся система названий, а также определенная нумерация домов. Наличие общепринятой адресации позволяет однозначно определить положение любого строения и в случае необходимости быстро отыскать его.

Именно на существовании такой адресной системы построена работа почты. Во многих случаях расположение улиц и присвоение им имен носит беспорядочный характер. В то же время бывает, что эта деятельность тщательно продумана и является продолжением общей планировки города, т.е. фактически частью его архитектуры.

Классическим примером может служить известная система взаимно-перпендикулярных улиц (авеню и стриты) города Нью-Йорка. Помимо чисто практической, архитектура города может иметь еще и художественную ценность (что обычно больше интересует приезжих).

Но этот аспект понятия “архитектура” вряд ли переносим на вычислительную технику.

Используя аналогию с градостроительством, естественно понимать под архитектурой ЭВМ ту совокупность их характеристик, которая необходима пользователю. Это, прежде всего, основные устройства и блоки ЭВМ, а также структура связей между ними.

И действительно, если заглянуть, например, в “Толковый словарь по вычислительным системам”, мы прочтем там, что термин “архитектура ЭВМ используется для описания принципа действия, конфигурации и взаимного соединения основных логических узлов ЭВМ (вследствие чего термин “архитектура” оказывается ближе к обыденному значению этого слова)”.

Однако описание внутренней структуры ЭВМ вовсе не является самоцелью: с точки зрения архитектуры представляют интерес лишь те связи и принципы, которые являются наиболее общими, присущими многим конкретным реализациям вычислительных машин.

Часто говорят даже о семействах ЭВМ. т.е. группах моделей, совместимых между собой.

В пределах одного семейства основные принципы устройства и функционирования машин одинаковы, хотя отдельные модели могут существенно различаться по производительности, стоимости и другим параметрам.

Ярким примером могут служить различные модификации компьютеров PDP фирмы DEC (более известные нашим пользователям по отечественным аналогам – серии ДВК), семейство MSX-машин, к которому принадлежит широко распространенная YAMAHA, а также заполонившие мир IBM-совместимые персональные компьютеры.

Именно то общее, что есть в строении ЭВМ, и относят к понятию архитектуры.

Важно отметить, что целью такой общности в конечном счете служит вполне понятное стремление: все машины одного семейства, независимо от их конкретного устройства и фирмы-производителя, должны быть способны выполнять одну и ту же программу (на практике из-за постоянного роста вычислительной мощности техники чаще используется менее жесткий принцип совместимости снизу вверх: все программы данной модели выполнимы на более старших). Отсюда неизбежно следует вывод, что с точки зрения архитектуры важны не все сведения о построении ЭВМ, а только те, которые могут как-то использоваться при программировании и “пользовательской” работе с ЭВМ. Равно как максимально подробная архитектура города не нуждается в описании марок кирпичей, из которых построены дома, и растворов, которыми эти кирпичи скреплены, так и архитектура ЭВМ не содержит описания электронных схем, других деталей реализации, “невидимых” для пользователя (например, внутреннего ускорителя доступа к памяти).

  • Ниже приводится перечень тех наиболее общих принципов построения ЭВМ, которые относятся к архитектуре:
  • • структура памяти ЭВМ;
  • • способы доступа к памяти и внешним устройствам;
  • • возможность изменения конфигурации компьютера;
  • • система команд;
  • • форматы данных;
  • • организация интерфейса.
  • Суммируя все вышеизложенное, получаем следующее определение архитектуры:
  • “Архитектура – это наиболее общие принципы построения ЭВМ, реализующие программное управление работой и взаимодействием основных ее функциональных узлов”.
  • 2. Классическая архитектура ЭВМ и принципы фон Неймана

Основы учения об архитектуре вычислительных машин заложил выдающийся американский математик Джон фон Нейман. Он подключился к созданию первой в мире ламповой ЭВМ ENIAC в 1944 г., когда ее конструкция была уже выбрана. В процессе работы во время многочисленных дискуссий со своими коллегами Г. Голдстайном и А.

Берксом фон Нейман высказал идею принципиально новой ЭВМ. В 1946 г. ученые изложили свои принципы построения вычислительных машин в ставшей классической статье “Предварительное рассмотрение логической конструкции электронно-вычислительного устройства”.

С тех пор прошло полвека, но выдвинутые в ней положения сохраняют актуальность и сегодня.

В статье убедительно обосновывается использование двоичной системы для представления чисел (нелишне напомнить, что ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде).

Авторы убедительно продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций.

В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации – текстовую, графическую, звуковую и другие, но двоичное кодирование данных по-прежнему составляет информационную основу любого современного компьютера.

Еще одной поистине революционной идеей, значение которой трудно переоценить, является предложенный Нейманом принцип “хранимой программы”. Первоначально программа задавалась путем установки перемычек на специальной коммутационной панели.

Это было весьма трудоемким занятием: например, для изменения программы машины ENIAC требовалось несколько дней (в то время как собственно расчет не мог продолжаться более нескольких минут – выходили из строя лампы). Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа.

Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ) (обычно объединяемые в центральный процессор), память, внешняя память, устройства ввода и вывода.

Читайте также:  Заболевания, вызванные паразитическими плоскими червями - список и признаки болезней

Схема устройства такой ЭВМ представлена на рис. 1. Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком. Так, накопитель на магнитных дисках относится к внешней памяти, а клавиатура – устройство ввода, дисплей и печать – устройства вывода.

Рис. 1. Архитектура ЭВМ, построенной на принципах фон Неймана. Сплошные линии со стрелками указывают направление потоков информации, пунктирные – управляющих сигналов от процессора к остальными узлам ЭВМ

Устройство управления и арифметико-логическое устройство в современных компьютерах объединены в один блок – процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств (сюда относятся выборка команд из памяти, кодирование и декодирование, выполнение различных, в том числе и арифметических, операций, согласование работы узлов компьютера). Более детально функции процессора будут обсуждаться ниже.

Память (ЗУ) хранит информацию (данные) и программы.

Запоминающее устройство у современных компьютеров “многоярусно” и включает оперативное запоминающее устройство (ОЗУ), хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы), и внешние запоминающие устройства (ВЗУ) гораздо большей емкости, чем ОЗУ.

но с существенно более медленным доступом (и значительно меньшей стоимостью в расчете на 1 байт хранимой информации). На ОЗУ и ВЗУ классификация устройств памяти не заканчивается – определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство), и ПЗУ (постоянное запоминающее устройство), и другие подвиды компьютерной памяти.

В построенной по описанной схеме ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти. из которой будет извлечена следующая команда программы, указывается специальным устройством – счетчиком команд в УУ. Его наличие также является одним из характерных признаков рассматриваемой архитектуры.

Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название “фон-неймановской архитектуры”. Подавляющее большинство вычислительных машин на сегодняшний день – фон-неймановские машины.

Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели (примерами могут служить потоковая и редукционная вычислительные машины).

По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет в результате развития идеи машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.

Источник: http://gouspo.ru/?page_id=27

Внешние запоминающие устройства

В оперативной памяти данные хранятся до выключения питания. Однако существует информация, которую следует хранить долгое время. Для этого компьютеру необходима дополнительная память.

Такого рода устройства называются периферийными или внешними запоминающими устройствами (ВЗУ).

Таковыми являются накопители на магнитной ленте (стримеры), накопители на дискетах, винчестеры, CD-ROM, магнитооптические диски.

Накопители на гибких дисках.

Одни из старейших периферийных устройств ПК — накопители на гибких дисках (Floppy Disk Drive), так называемые флоппи-диски. Носителем информации служат дискеты диаметрами 3,5”, 5,25”и 8”.

В наши дни дискеты 5,25” используются крайне редко, 8” не используются совсем. Для всех форматов конструкция дискет одинакова.

На пластмассовый диск, расположенный в пластиковом футляре наносится магнитный слой для записи информации.

Существует понятие “плотность записи”. От нее зависит объем записываемой информации. Существуют стандарты SS/SD, DS/DD, DS/HD для 5/25” объем записываемой информации от 180 Кб до 1.2 Мб. DD, HD и ED для 3,5” дискет, объем записываемой информации от 720 Кб до 2,88 Мб.

Чаще всего встречаются дискеты 3,5” HD. Как носители информации дискеты почти изжили себя. Малый объем, небольшая скорость чтения/записи, ненадежность делают их применение невыгодным. Однако, они обладают большой мобильностью.

Накопители на жестких дисках.

Следующий тип носителей – так называемые “винчестеры” или накопители на жестких дисках (Hard Disk Drive).

По сравнению с дискетами они имеют некоторые преимущества: объем записываемой информации многократно превосходит возможности гибких дисков, скорость чтения/записи также намного больше, надежность гораздо более высока. “Винчестеры” выполняются как в виде внутренних и внешних (переносных) устройств.

Физические размеры дисков определяются так называемым форм-фактором. HDD с форм-фактором 3,5” имеют стандартные размеры корпуса 41.6х101х146 мм. Также они имеют несколько стандартных значений высоты 2,6”, 1”,3/4”, 0,5”.

Чаще всего в компьютерах используются винчестеры 3,5”, 1” в высоту, так называемые Slimline. Винчестеры бывают нескольких типов: MFM, RLL, ESDI, IDE и SCSI. Диски типов MFM, RLL и ESDI уже не устанавливаются в современные машины. Их использовали на ПК типа ХТ и 286АТ.

Одними из первых винчестеров, достигшими емкости 100 Мб были диски типа ESDI. Они использовались на сетевых серверах и высокоскоростных устройствах.

Сегодня используются винчестеры типа IDE (Integrated Drive Electronics). Их главное отличие от предыдущих типов заключается в том, что управляющая электроника расположена не в контроллере, а на винчестере.

Данное преимущество проявляется при приеме и передаче информации, так как в таких устройствах оптимально согласованы прием и передача сигналов.

IDE HDD обрабатывают данные совместно с шиной ввода/вывода, поэтому частота тактового сигнала шины должна соответствовать быстродействию HDD.

Винчестеры типа SCSI имеют самую высокую скорость обмена данными. Хотя их основные характеристики сопоставимы с IDE-винчестерами, они различаются тем, что SCSI-винчестеры могут хранить большие объемы информации за счет высокой скорости обмена данными, в то время как объем IDE-винчестеров ограничен их производительностью.

Основной характеристикой винчестера является его емкость. Сегодня объем данных, которые можно записать должен быть не менее 4-5 Гб. Однако требования постоянно растут, поэтому жесткий диск приходится менять раз в 1-2 года. Частота смены зависит от то того насколько интенсивно и с какими целями используется компьютер.

Следующая важная характеристика — время доступа необходимое HDD для поиска информации на диске. Сегодня среднее время доступа для лучших IDE и SCSI дисков — это значение меньше 10 мс.

Среднее время поиска – время в течение которого магнитные головки перемещаются от одного цилиндра к другому. Эта характеристика зависит, в основном, от механизма привода головок, а не от интерфейса диска.

Скорость передачи данных, зависит от числа байт в секторе, количестве секторов на дорожке и от скорости вращения дисков (3000-3600 об./мин).У самых современных HDD скорость достигает 7200 об/мин.

Гарантированное производителями время безотказной работы обычно составляет 20000-500000 часов. Однако, наработка винчестера за год составит 8760 часов, что делает этот параметр не столь важным, так как винчестер устареет раньше чем испортится.

На скорость работы винчестера существенно влияет кэш-память – ячейки памяти, размещенные на контроллере винчестера. Она работает по принципу кэш памяти 2-го уровня. Типичная величина может варьироваться от 64 Кб. до 1024 Кб.

Съемные/внешние/переносные жесткие диски по своим характеристикам не отличаются от обычных.

Альтернативой являются накопители со сменными дисками, в отличии от съемных винчестеров подвижным является лишь непосредственно носитель информации, функционально напоминают накопители на жестких дисках, но существенно превосходят их по характеристикам.

Объем записываемой информации варьируется от 100 Мб, до 1 Гб, среднее время доступа 10-30 мс, средняя скорость обмена 4-6 Мб/сек. Производственных стандартов на данный вид ВЗУ не существует, однако наиболее распространены накопители серии Zip и Jaz фирмы iOmega.

Ранее использовавшиеся для аудиоаппаратуры компакт-диски были модифицированы для применения в РС и теперь стали неотъемлемой частью современных компьютеров. СD являются отличным носителем информации. Они более компактны, удобны и дешевы чем винчестер, однако, не могут использоваться как HDD, так как стоимость записи и ее скорость намного выше.

Привод выполняется как внутренне устройство, и имеет размер дисковода 5,25”. Может управляются через IDE-, SCSI-интерфейс или звуковую карту. Диск изготавливается из поликарбоната, с одной стороны его покрывают отражающим слоем (из алюминия или золота). Запись осуществляется путем выжигания чередований углублений в металлическом слое лазерным лучом.

Основная характеристика — скорость передачи данных. Единицей считывания является скорость считывания с магнитной ленты. У созданных позже устройств скорость считывания кратна ей и варьируется от 150 Кб/сек до 6-7 Мб/сек.

Качество считывания характеризует коэффициент ошибок. Качество является оценкой вероятности искажения информационного бита при его считывании. Этот параметр отражает способность устройства корректировать ошибки чтения/записи.

Среднее время доступа – время, требующееся приводу для поиска необходимых данных на носителе, варьируется от 400 до 80 мс. Буферная память позволяет передавать данные с постоянной скоростью. Существует три типа буферов: динамический, статический и с опережающим чтением. Средняя наработка на отказ составляет 50-125 тысяч часов, что намного опережает сроки морального устаревания устройства.

Существуют также накопители CD-RW, позволяющие производить запись на компакт-диск. При этом диск покрыт слоем термочувствительной краски, с такими же отражающими свойствами, как и у алюминиевого покрытия. Этот привод считается последним достижением в области разработок записываемых компакт дисков.

DVD (Digital Video Disk) – диски, которые сменят CD-ROM, первоначально разрабатывались для домашнего видео. Отличаются тем, что могут хранить объем данных многократно превышающий возможности компакт дисков (от 4,7 до 17 Гб.). При этом уровень качества звука и изображения хранимого на DVD приближается к студийному качеству.

В DVD лазерный луч уже, что позволяет снизить толщину защитного слоя диска в 2 раза. Это привело к появлению двухслойных дисков.

Магнитооптические накопители (Magneto-Optical) являются накопителем информации, в основе которого лежит магнитный носитель с оптическим управлением.

Сплав, которым покрыта поверхность такого магнитооптического диска, меняет свои свойства как под воздействием тепла, так и под воздействием магнитного поля.

Если происходит нагревание диска сверх некоторой температуры, то становится возможным изменение магнитной поляризации с помощью небольшого магнитного поля. На этом свойстве основываются технологии чтения записи магнитооптических дисков.

Такие диски могут быть односторонними 3,5” емкости 128, 230, и 640 Мб. Двухсторонними 5,25” емкостью 600 Мб. – 2,6 Гб. 2,5” диски Mini Disk Data фирмы Sony, созданы специально для аудиоустройств и имеют емкость 140 Мб. 12” диски для однократной записи емкостью 3,5 – 7 Гб получили большое распространение при построении оптических библиотек.

В стримерах в качестве носителя информации используется магнитная лента. Они могут быть выполнены как в виде внешнего, так и в виде внутреннего устройства. Стримеры в основном используются для архивации и создания резервных копий больших объемов данных на компактном носителе. Их недостатки: малая скорость передачи данных.

Она значительно ниже, чем у винчестеров и сменных жестких дисков. Именно поэтому стримеры рекомендуются только для резервного копирования больших объемов информации. Существуют стандарты: QIC, TRAVAN, DDS, DAT и DLT.

У стандарта QIC (Quarter Inch Cartridge) низкое быстродействие, так как подключается к интерфейсу накопителей на гибких дисках. Существуют кассеты объемом от 40 Мб до 13 Гб. TRAVAN разработан на основе QIC. Он использует контроллер накопителя на магнитных дисках или SCSI-2, в зависимости от объема кассеты.

DSS (Digital Data Storage) и DAT (Digital Audio Tape) стандарты разработаны фирмой Sony для цифровой аудио и видео записи. Самый современный стандарт DLT (появился в середине 90-х годов. Накопители, созданные на основе этой технологии, хранят от 20 до 40 Гб данных.

Общая емкость ленточных библиотек построенных на основе кассет DLT может достигать 5 Гб. Дорогим и редким ВЗУ является массовая память — набор микросхем памяти большого объема поставляемых на одной плате, эмулирующих работу жесткого диска.

Таким образом, можно сказать, что жесткие диски еще долго будут сохранять лидирующие позиции на рынке ВЗУ. Это связано с низкой стоимостью записи по сравнению с CD, которые являются достойными конкурентами по объему записываемой информации. Различные способы хранения и записи информации соответствуют различным целям.

На текущий момент не существует универсального ВЗУ, которое может быть использовано как постоянное и переносное одновременно и быть при этом доступным обычным пользователям.

По всей видимости, в ближайшие годы нам придется так же пользоваться винчестерами в качестве основного носителя хотя мысль не стоит на месте, и никто не знает, что еще может изобрести человек в скором времени.

Источник: https://studyport.ru/referaty/tehnika/6223-vneshnie-zapominajuschie-ustrojstva

Внешние запоминающие устройства

Внешние запоминающие устройства (ВЗУ) обеспечивают долговременное хранение программ и данных. Наиболее распространены следующие типы ВЗУ: накопители на магнитных дисках (НМД); их разновидности — накопители на гибких магнитных дисках (НГМД) и накопители на жестких магнитных дисках (НЖМД); накопители на магнитных лентах (НМЛ); накопители на оптических дисках (НОД).

Соответственно, физическими носителями информации, с которыми работают эти устройства, являются магнитные диски (МД), магнитные ленты (МЛ) и оптические диски (ОД).

Принцип записи информации на магнитных носителях основан на изменении намагниченности отдельных участков магнитного слоя носителя (диска, ленты).

Запись осуществляется с помощью магнитной головки: электрические сигналы, возникающие под управлением электронного блока, возбуждают в ней магнитное поле, воздействующее на носитель и оставляющее намагниченные участки на заранее размеченных дорожках.

При считывании информации эти намагниченные участки индуцируют в магнитной головке слабые токи, которые превращаются в двоичный код, соответствующий ранее записанному.

  • Накопители на магнитных дисках включают в себя ряд систем:
  • • электромеханический привод, обеспечивающий вращение диска;
  • • блок магнитных головок для чтения-записи;
  • • системы установки (позиционирования) магнитных головок в нужное для записи или чтения положение;
  • • электронный блок управления и кодирования сигналов.

НГМД — устройство со сменными дисками (их часто называют «дискетами»). Несмотря на относительно невысокую информационную емкость дискеты, НГМД продолжают играть важную роль в качестве ВЗУ, поскольку поддерживают ряд функций, которые не обеспечивают другие накопители. Среди них отметим

• возможность транспортировки информации на любые расстояния;

• обеспечение конфиденциальности информации (дискету можно положить в карман сразу после окончания сеанса работы).

Дискета — гибкий тонкий пластиковый диск с нанесенным (чаще всего на обе стороны) магнитным покрытием, заключенный в достаточно/тверды и — картонный или пластиковый — конверт для предохранения от механических повреждений. Информация на диск наносится вдоль концентрических окружностей — дорожек.

Каждая дорожка разбита на несколько секторов (обычно 9 или 18) — минимально возможных адресуемых участков. Стандартная емкость сектора — 512 байт. На двухсторонней дискете две одинаковые дорожки по обе стороны диска образуют цилиндр. Процедура разметки нового диска — нанесение секторов и дорожек -называется форматированием.

Иногда приходится прибегать к переформатированию диска, на котором уже есть информация; последняя в таком случае практически обречена на уничтожение.

  1. Тип дискеты обычно указывается на ее конверте:
  2. DS (double side) — двухсторонняя;
  3. DD (double density) — двойной плотности;
  4. HD (high density) — высокой плотности.
  5. Возможны сочетания типа DS/DD, DS/HD и др.

Стандартные размеры (диаметры) дискет 133 мм (5,25 дюйма; постепенно выходят из эксплуатации) и 89 мм (3,5 дюйма). Появились,но пока не получили широкого распространения, дискеты диаметром 51 мм.

Важнейшая, с точки зрения пользователя, характеристика дискеты — информационная емкость. Чаще всего она находится в диапазоне от одного до полутора мегабайт, хотя созданы дискеты с емкостью до 10 Мбайт. Специальные дискеты для резервного копирования (так называемые Zip-диски, для работы с которыми нужны особые дисководы) имеют емкость 100 Мбайт и более.

Другие важнейшие характеристики — скорость доступа к определенному участку информации и скорость записи или считывания информации — определяются не столько самой дискетой, сколько возможностями НГМД.

Доступ к информации осуществляется за время в диапазоне от 0,1 с до 1 с (что очень велико по сравнению с другими типами дисководов), скорость чтения/записи порядка 50 кбайт/с, что по современным представлениям весьма немного.

Жесткий диск сделан из сплава на основе алюминия и также покрыт магнитным

слоем. Он помещен в неразборный корпус, встроенный в системный блок компьютера.

По всем профессиональным характеристикам жесткие диски (и соответствующие накопители) значительно превосходят гибкие: емкость от 20 Мбайт до 10 Гбайт (реально диски с емкостью меньшей, чем 1 Гбайт, давно не выпускаются), время доступа к конкретной записи в диапазоне от 1 до 100 миллисекунд (мс), скорость чтения/записи порядка 1 Мбайта/с. Скорость вращения дисков велика, обычно 3600 об/мин, что и обеспечивает относительно короткое время доступа. Однако, жесткий дискне предназначен для транспортировки информации,и это не позволило накопителям на жестких дисках вытеснить НГМД.

Первые накопители на оптических дисках появились в начале 70-х годов, но широкое распространение получили значительно позже. Существует несколько разновидностей оптических дисков, предназначенных для устройств, допускающих только чтение (CD-ROM, т.е.

Compact Disk Reed Only Memory — компакт-диск только для чтения), для устройств, допускающих хотя бы однократную запись информации на рабочем месте пользователя и для устройств, позволяющих, подобно накопителям на магнитных дисках, многократную перезапись информации.

Читайте также:  Иоанн Дамаскин - служба у халифа и ключевые моменты биографии

CD-ROM диск, запись на который производится один раз при его создании и не может быть изменена, представляет собой прозрачную поликарбонатную (вид стекла) пластинку, одна сторона которой покрыта тончайшей алюминиевой пленкой, играющей роль зеркального отражателя, поверх которой нанесен защитный слой лака.

Информация на ней представляется подобно тому, как на старых граммофонных пластинках — чередованием углублений и пиков, однако не в аналоговом, а в цифровом (двоичном) коде. Этот рельеф создается при производстве механическим путем (контактом с твердой пластинкой — матрицей).

Информация наносится вдоль тончайших дорожек (радиальная плотность записи более 6000 дорожек/см, что в несколько десятков раз больше, чем для гибкого диска). Считывание информации осуществляется путем сканирования дорожек лазерным лучом, который по-разному отражается от углублений и пиков (по этому отражению восстанавливается записанный двоичный код).

Вдоль дорожек оптического диска со скоростью 200 — 500 раз в минуту пробегает лазерный луч. При создании дисков, позволяющих вести многократную перезапись, доминирует магнито-оптический принцип (CD-МО диски). В основу положен следующий физический принцип: коэффициент отражения лазерного луча от по-разному намагниченных участков диска с особым образом нанесенным магнитным покрытием различен. Таким образом запись на МО-диски магнитная, а считывание — оптическое (лазерным лучом).

Профессиональные характеристики оптических дисков, в общих чертах таковы: емкость записи и скорость доступа к информации того же порядка, что у жестких дисков. По надежности хранения информации оптические диски в настоящее время не имеют себе равных.

Все вместе взятое и определяет место НОД в современном мире информационных технологий: от очень важных, но все-таки факультативных, устройств они становятся обязательной принадлежностью компьютеров.

По мере снижения стоимости оборудования CD-МО диски могут вытеснить гибкие магнитные диски, так как, обладая значительно превосходящими профессиональными характеристиками, обеспечивают все функции ГМД. Заметим, что ситуация в .

этой области меняется чрезвычайно быстро.

Накопители на магнитных лентах имели огромное значение для ЭВМ первых поколений. Собственно, поначалу кроме них надежных накопителей информации большой емкости вообще не было. По мере развития ЭВМ НМЛ оттеснялись на периферию в списке ВЗУ, но свое устойчивое место занимают по сей день (хотя пользователям персональных компьютеров это не очень заметно).

Ясно, что по скорости доступа к информации НМЛ всегда будут многократно проигрывать дисковым накопителям — ведь для того, чтобы считать информацию на некотором месте ленты, необходимо отмотать предшествующий ее кусок с начала.

Однако по-прежнему на лентах хранят большие объемы информации, которая не является оперативной, но требует очень надежного хранения, а также конфиденциальности.

На персональных компьютерах иногда используют специальный кассетный накопитель, размеры которого совпадают с размерами НГМД и который можно вставить на место последнего — так называемый стриммер. Он удобен, например, для переноса информации с жесткого диска одного компьютера на другой, долговременного хранения особо ценных системных и личных программ и данных.

Источник: http://csaa.ru/vneshnie-zapominajushhie-ustrojstva/

Внешние устройства ЭВМ — Внешние запоминающие устройства

Эти устройства обеспечивают хранение больших массивов информации. Они относительно недороги, но обладают значительно меньшим быстродействием, чем устройства внутренней памяти ЭВМ. Наиболее широкое распространение получили ВЗУ на магнитных носителях (лентах и дисках).

(МЛ) — это эластичная основа из пластмассового материала, на которую наносится магнитное покрытие. Магнитные диски могут быть жесткими и гибкими. Жесткие магнитные диски изготавливаются из алюминиевых сплавов и покрываются ферролаком или металлической пленкой на основе никеля, кобальта, вольфрама.

Гибкие магнитные диски

(ГМД) создаются на пластмассовой основе с магнитным покрытием.

Запись информации производится при движении магнитного носителя под магнитной головкой, в результате чего изменяется состояние намагниченности участка магнитного материала. Считывание записанной информации осуществляется с помощью головки считывания. Данные могут одновременно записываться на нескольких параллельных дорожках при наличии соответствующего числа магнитных дорожек.

Емкость ВЗУ зависит от плотности записи, т.е. от количества информации, размещенной на единице площади поверхности рабочего слоя носителя.

Данные записываются на магнитные носители в последовательной или последовательно-параллельной форме. При последовательной форме записи машинные слова размещаются на одной дорожке — разряд за разрядом.

При последовательно-параллельном способе записи слова разбиваются на строки, называемые кадрами или слогами, разряды, которых располагаются на нескольких магнитных дорожках поперек движения носителя. Группа машинных слов, записанных на магнитном носителе без промежутков, образует блок данных.

Место, занимаемое одним блоком на носителе, называется зоной. Каждая зона нумеруется. Зоны разделяются межзонными промежутками.

Совокупность упорядоченных записей, объединенных по некоторому признаку (т.е. по содержанию), хранится на магнитных носителях в виде файлов. Файлы могут иметь переменную длину. Группа файлов образует том, который обозначает стандартный для соответствующего накопителя носитель информации, например для НМЛ — это катушка магнитной ленты.

В зависимости от способа поиска информации на магнитном носителе различают два типа ВЗУ: накопители с последовательной и прямой выборкой. К первому типу относятся накопители на МЛ (НМЛ), таккак данные на магнитной ленте размещаются упорядоченно в последовательном виде.

Накопителями на магнитных дисках (НМД) являются ВЗУ с прямым доступом, так как они обеспечивают возможность непосредственного обращения к данным. Это связано с тем, что каждая запись на диске имеет свой адрес, по которому осуществляется прямой доступ и к данным.

Среднее время доступа к данным в НМД значительно меньше, чем в НМЛ с последовательной выборкой.

Магнитные ленты бывают катушечными и кассетными. Катушечная МЛ имеет ширину 12,7 мм. Длина МЛ, размещаемой на катушке, может колебаться от 90 до 750 м. В нескольких метрах от начала и конца МЛ на катушке со стороны подложки приклеиваются маркеры из тонкой фольги или металлизированного пластика, которые называются маркерами начала ленты (НЛ) и конца (КЛ).

Запись производится по девяти дорожкам. Стандартная плотность записи — от 8 до 243 бит/мм. Максимальный объем информации в сменной катушке достигает 500 Мбайт. Катушечные НМЛ применяются в больших ЭВМ. Кассетные НМЛ используются в микроЭВМ. Кассетная МЛ имеет ширину 3,71 мм. Емкость кассеты при 2048 зонах равна 5 Мбит.

При этом информация записывается на двух или четырех дорожках.

НМЛ характеризуются большой емкостью, низкой стоимостью хранения информации; обеспечивают возможность многократной записи и считывания данных и длительного хранения информации. Основным недостатком НМЛ является: большое время поиска данных, сравнительно невысокая скорость обмена информацией и недостаточная надежность.

Накопители на магнитных дисках бывают с жесткими и гибкими, постоянными или сменными дисками.

Жесткие диски, используемые в больших ЭВМ, выпускаются в виде пакетов, насаженных на одном валу дисков. Запись информации производится последовательным кодом на концентрические дорожки на поверхности диска. Дорожки одного и того же диаметра на разных дисках образуют концентрические круговые цилиндры.

Количество цилиндров определяется числом концентрических окружностей на диске. Расположение файла на одном цилиндре обеспечивает поиск и обработку записей, входящих в файл, без радикального перемещения головок.

Начало дорожки указывается с помощью метки начала оборота, представляющей собой отверстие на одном из дисков пакета.

Накопители на магнитных дисках делятся на две группы: НМД на сменных магнитных дисках (НСМД) и НМД на постоянных магнитных дисках (НПМД).

Сменные пакеты позволяют наращивать емкость внешней памяти, а также обмениваться пакетами дисков между различными вычислительными системами без перезаписи информации.

В настоящее время наибольшее распространение получили накопители на жестких дисках, изготовленные по технологии типа «винчестер». Их основная особенность — герметизация накопителя, которая достигается использованием единого блока «головка-носитель». Герметически закрытый пакет дисков устанавливается в ЭВМ однократно.

Такая конструкция позволила значительно улучшить технико-эксплуатационные характеристики НМД. Благодаря уменьшению зазора между диском и головкой удалось повысить плотность записи информации.

Бесконтактная запись обеспечивает высокую скорость вращения носителя, что значительно увеличивает быстродействие НМД при записи и считывании информации.

Накопители на жестких магнитных дисках (НЖМД) типа «винчестер» выпускаются с максимальной емкостью не менее 1 Гбайт. При скорости вращения дисков 3600 об/мин достигается передача информации со скоростью до 5 Мбайт/с.

Накопители на гибких магнитных дисках (НГМД) характеризуются малыми размерами и низкой стоимостью. Они весьма удобны и просты в эксплуатации. НГМД имеют достаточно большую емкость (в пределах от 100 Кбайт до 20 Мбайт).

НГМД бывают односторонними и двусторонними в зависимости от количества поверхностей, которые используются для записи информации.

Емкость НГМД зависит от плотности записи информации. Применение поперечной записи информации с плотностью до 15 дорожек на 1 мм позволяет иметь на дискете диаметром 133 мм неформатную емкость 6,6 Мбайт.

Гибкие магнитные диски, или дискеты, выпускаются диаметром 8 дюймов (203 мм), 5,25 дюйма (133 мм), 3,5 дюйма (8,9 мм) и 3 дюйма (7,6 мм).

Гибкий диск постоянно находится в пластиковом чехле. Привод зажимает центр диска и вращает диск внутри чехла. Прорезь в чехле обеспечивает доступ головки записи-чтения к концентрическим дорожкам.

Вторая прорезь позволяет оптически воспринимать индексное отверстие на диске, которое отмечает начальную точку каждой дорожки. На чехол диска, на который разрешена запись, помещается отражающая этикетка.

Схема «записи» привода диска автоматически отключается, если на диске нет отражающей этикетки.

Частота вращения диска 360 об/мин. Обмен данными с диском осуществляется побитно с номинальной скоростью 250 000 бит/с.

Обмен начинается, когда головка записи-чтения подведена к нужной ячейке конкретной дорожки; для обмена данными головка опускается и приводится в соприкосновение с поверхностью диска.

Головка записи-чтения контактирует с гибким диском, поэтому и головка, и диск подвержены износу. НГМД менее надежен, чем дисковый накопитель с плавающими головками.

Весьма перспективным направлением развития новых типов ВЗУ является создание внешней памяти на оптических дисках. Принцип действия ВЗУ на оптических дисках основан на использовании свойств некоторых материалов изменять свое физическое состояние под влиянием лазерного луча.

Физической средой оптических дисков, изменяющейся под воздействием лазерного луча различной интенсивности излучения, является тонкая светочувствительная пленка (например, теллуровая или золотая), которая наносится на стеклянные или пластмассовые диски.

Оптические диски имеют самую высокую плотность записи информации, высокую надежность и достаточно большое быстродействие.

Выпускаемые промышленностью оптические диски имеют заранее подготовленные дорожки и жесткий формат разметки.

Применение оптических дисков достаточно велико: настольное издательство, системы компьютерного проектирования, большие базы данных, хранение конфиденциальной информации, сложные игровые системы и т.п.

Диски однократной записи диаметром 300 мм обладают емкостью памяти свыше 1,8 Гбайт на сторону, при диаметре диска 120 мм — емкость 540 Мбайт. Фирмой Verbatim, например, выпускаются 5,25-дюймовые перезаписываемые оптические диски емкостью от 600 Мбайт до 1,3 Гбайт с очень высокой надежностью. Скорость считывания достигает 5 Мбит/с.

Накопители с неподвижными носителями информации характеризуются высокими показателями надежности и быстродействия, так как они не имеют механических подвижных узлов. К таким накопителям относятся ЗУ на цилиндрических магнитных доменах (ЦМД). Эти устройства энергонезависимы, информация на них сохраняется и при снятии поля намагниченности.

В одном корпусе обычно размещаются кристалл с магнитной пленкой размером около 10х10 мм и источник поля. Информационная емкость такого элемента составляет десятки мегабайт. ВЗУ на ЦМД может включать до 500 подобных элементов.

Однако быстродействие ЗУ на ЦМД пока сравнительно низко, а конструкция достаточно сложна, в связи с чем такие устройства пока не нашли широкого распространения.

Устройства ввода-вывода могут использовать машинные носители информации или работать непосредственно с документом.

 

Накопители на гибких дисках

служат для хранения программ и данных небольшого объема и удобны для перенесения информации с одной ПЭВМ на другую.

На рабочей поверхности диска (дискеты) по концентрическим окружностям, размещенным на определенном расстоянии от центрального отверстия, записываются данные. Стандартный формат дискеты для IBM PC и совместимых с ней ПЭВМ имеет 40 (80) дорожек.

Каждая дорожка разделена на части, называемые «секторами» или «записями». Секторы представляют собой основную единицу хранения информации на дискете.

При чтении или записи устройство всегда считывает или записывает целое число секторов независимо от объема запрашиваемой информации.

Емкость сектора (число байтов или слов) — основная характеристика формата данных на носителе. Она определяется наименьшим количеством данных, которое может быть считано или записано на дискету за одну операцию ввода-вывода.

Данные на дискете могут размещаться как на одной стороне, так и на двух ее сторонах.

Важной характеристикой дискеты является плотность записи. Дискеты могут быть с одинарной, двойной и повышенной (учетверенной) плотностью записи. При одинарной плотности записи на двусторонней дискете диаметром 5,25 дюйма сохраняется до 780 Кбайт, а при повышенной плотности записи емкость НГМД составляет до 1,2 Мбайт.

Существуют два способа разбивки (разметки) дорожек на секторы: фиксированный (или аппаратный) и программный.

Если размер сектора задан жестко и определяется механическими характеристиками устройства, такая разметка называется фиксированной.

При фиксированной разметке индексные отверстия, расположенные по кругу, обозначают начало каждого сектора и, следовательно, его положение на дискете точно определено.

Для стандартных дискет ПЭВМ размером 133 мм (5,25 дюйма) расположение дорожек на дискете и число сторон неизменны: они определяются характеристиками самих дискет.

Однако количество секторов на дорожке и их размер могут определяться программно в процессе разметки (форматирования). Именно поэтому гибкие диски называют также дисками с программной разметкой секторов (soft-sector).

Форматирование выполняется либо программами операционной системы, либо программами BIOS.

Размер сектора 5,25-дюймового диска, поддерживаемого системой BIOS, может составлять 128,256,512 и 1024 байт.

В последние годы широкое распространение получили НГМД диаметром 3 дюйма. Их емкость достигает 1,44 Мбайт.

Достоинством этих НГМД по сравнению с 5,25-дюймовыми дискетами являются не только большая компактность, но и наличие жесткого пластикового корпуса со специальной металлической сдвигающейся крышкой, защищающего рабочие поверхности дискеты от загрязнения и механических повреждений. Специальные сдвигающиеся рычажки на корпусе дискеты обеспечивают ее механическую защиту от записи.

Как правило, современные настольные ПЭВМ имеют ВЗУ для обоих типов дискет, а портативные — лишь для 3-дюймовых.

содержат несколько дисков, объединенных в пакет. Чаще всего такой пакет включает 4-6 дисков диаметром 5,25 или (в портативных ПЭВМ) 3 дюйма. НЖМД является несменяемым, располагается внутри системного блока.

В НЖМД магнитные головки, объединенные в блок, перемещаются одновременно в радиальном направлении по отношению к дискам. Дорожки с одинаковыми номерами на разных поверхностях дисков образуют цилиндр.

Цилиндр имеет тот же номер, что и объединенные им дорожки. Любой диск имеет физический и логический формат.

Физический формат диска определяет размер сектора (в байтах), число секторов на дорожке (или — для жестких дисков -в цилиндре), число дорожек (цилиндров) и число сторон.

Логический формат диска задает способ организации информации на диске и фиксирует размещение информации различных типов.

В отличие от гибких дисков, физический и логический форматы которых устанавливаются в процессе форматирования дискеты, жесткие диски поступают к потребителю с определенным физическим форматом.

Логическая структура жесткого диска устанавливается пользователем, причем это должно быть сделано до применения этого диска операционной системой. Установка логической структуры диска выполняется в два этапа. Сначала жесткий диск разбивается на части, каждая из которых может использоваться своей операционной системой.

Далее каждую из этих частей необходимо отформатировать в соответствии с требованиями той операционной системы, для которой она предназначена.

Наиболее часто применяются форматы данных, соответствующие фиксированным числам секторов на одной дорожке, например, форматы с 17 или 32 секторами на дорожке. При этом емкость информации в одном секторе колеблется от 512 до 1024 байт.

Для организации хранения и учета данных на диске можно использовать различные схемы, каждая из которых имеет свои достоинства и недостатки с точки зрения эффективности использования пространства памяти диска, скорости доступа, безопасности и качества хранения данных.

В настоящее время наиболее распространены НЖМД емкостью от 80 до 2400 Мбайт. Вместе с тем нередкими стали конфигурации ПЭВМ, включающие НЖМД типа «винчестер» емкостью в 500 Мбайт и даже в 1 Гбайт.

Важным параметром для пользователя является время доступа, характеризующее скорость чтения и записи информации на диски. Для наиболее распространенных НЖМД оно колеблется от 14 до 70 мкс.

Реальная скорость работы НЖМД в большой степени зависит от типа используемой программы. Так, обработка больших массивов информации, требующая многократного поиска одиночных сведений, может неожиданно для пользователя занять весьма значительное время.

Еще более продолжительной может оказаться обработка сложных изображений.

Расширение внешней памяти достигается подключением к системному блоку стриммера. Стриммер — это устройство для быстрой перезаписи данных с жесткого диска на магнитную ленту. Обычно емкость стриммера колеблется от 80 до 525 Мбайт.

В последние годы появились устройства для хранения информации на оптических (лазерных) дисках» Их емкость измеряется гигабайтами и даже десятками гигабайт, однако в большинстве случаев такие диски не допускают перезаписывания, поэтому используются для хранения постоянной информации (например, сложных компьютерных игр с высокоразвитой графикой).

Источник: http://www.xserver.ru/user/vnesh/2.shtml

Ссылка на основную публикацию