Третий закон ньютона — студенческий портал

Третий закон Ньютона - Студенческий портал

|

Физика

Принципы классической механики формировались в течение длительного времени. Многие века ученые пытались выяснить законы движения материальных тел. И только Ньютон обобщил все накопленные к тому времени знания о движении физических тел. В 1687 г. им была опубликована работа «Математические начала натуральной философии».

В этой работе Ньютон систематизировал все знания о движении и силе, подготовленные до него Галилеем, Гюйгенсом и другими учёными, а также знания, известные ему самому. Ньютон сформулировал 3 основных закона движения тел: — В отсутствие внешних силовых воздействий тело будет продолжать равномерно двигаться по прямой. — Ускорение движущегося тела пропорционально сумме приложенных к нему сил и обратно пропорционально его массе.— Всякому действию сопоставлено равное по силе и обратное по направлению противодействие. Что такое сила и какие силы бывают? Первый закон Ньютона — как движется тело под действием сил? Второй закон — связь силы с массой и ускорением Третий закон или закон действия и противодействия Третий закон Ньютона - Студенческий портал

Курирую урок, все предложения пишите в х под уроком или личным сообщением

Хотите делать уроки с нами?

Вводное тестирование

Проверь готовность к уроку

0%

0%

0%

0%

0%

0%

0%

0%

0%

Ты еще не готов к этому уроку

Начинай изучать урок

Полный вперёд!

Что такое сила и какие силы бывают?

Из жизненного опыта мы знаем, что тела могут действовать друг на друга: футболист бьет мяч, Земля притягивает Луну, магнит притягивает металлические предметы и т.д. Мерой всех таких взаимодействий является сила.

Сила – это физическая величина, которая показывает как (насколько сильно) и в каком направлении одно тело действует на другое. Сила является векторной величиной, обозначается, как правило, буквой F . Независимо от природы силы, все они подчиняются законам Ньютона.

Все силы можно разделить на два основных типа: силы, действующие при непосредственном соприкосновении (например, сила трения, упругая сила деформации, сила Архимеда), и силы, которые действуют на расстоянии (сила гравитационного притяжения, сила Кулона).

Можно, выбрав определенную пружину, отметить, при каких растяжениях она действует с силой, равной двойной, тройной и т. д. эталонной силе. Проградуированную таким образом пружину называют динамометром

Третий закон Ньютона - Студенческий портал

Если на тело действует одновременно несколько сил, то их действие на тело можно заменить действием одной силы — равнодействующей. Равнодействующая сила вычисляется по правилу векторного сложения.

Третий закон Ньютона - Студенческий портал

0%

Первый закон Ньютона — как движется тело под действием сил?

Наблюдения и опыт показывают, что тела начинают движение только при действии на них других тел.

Например, бросаемый мяч приходит в движение под действием мышц руки. Ловя мяч, мы замедляем и останавливаем его, также действуя на него рукой.

Если же
на тело никакие другие тела не действуют, то оно будет либо оставаться в покое относительно Земли, либо двигаться относительно нее равномерно и прямолинейно.

Указанное правило называют законом инерции, а движение при отсутствии действия на тело других тел называют движением по инерции.

Инерция — свойство тел сохранять свою скорость при отсутствии действия на них других тел.

Этот закон, который впоследствии великий математик и физик Исаак Ньютон назвал
первым законом движения тел, был впервые сформулирован Галилеем в ходе тщательных опытов по изучению движения тел.

Третий закон Ньютона - Студенческий портал

Примеры проявления инерции: пассажиры автобуса движутся по инерции вперед при резком торможении, велосипедист по инерции вылетает вперед, если резко тормозит перед препятствием, спутник на орбите Земли движется по инерции, не расходуя топливо.

В современной физике строгая формулировка первого закона Ньютона звучит так: существуют такие системы отсчета, называемые инерциальными, относительно которых тело при отсутствии на него внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения. Таким образом, первый закон Ньютона постулирует существование инерциальных систем отсчета — систем, для которых выполняется закон инерции.

Проще говоря, суть первого закона можно сформулировать так: если мы на абсолютно ровной дороге толкнем тележку и представим, что можно пренебречь силами трения колес и сопротивления воздуха, то она будет катиться с одинаковой скоростью бесконечно долго.

А вот в неинерциальных системах скорость тела может меняться без силы. Например: представьте, что вы стоите в центре автобуса, равномерно едущего по ровной дороге. Находясь внутри, вы даже не чувствуете, что автобус едет. В какой-то момент автобус резко тормозит и вас «бросает» вперед, хотя не действует никакая сила. То есть вы начинаете двигаться относительно автобуса без всякой причины. В таком случае автобус — это пример неинерциальной системы отсчета. Неинерциальные системы отсчета — это системы, которые двигаются с ускорением. В таких системах вводятся так называемые силы инерции, чтобы при расчетах также можно было пользоваться законами Ньютона. Нашу Землю можно условно отнести к инерциальным системам отсчета, поскольку вращение Земли есть ни что иное, как движение с центростремительным ускорением. Но так как Земля вращается достаточно медленно, то и центростремительное ускорение получается небольшим. С высокой степенью точности инерциальной является гелиоцентрическая система отсчета (или система Коперника), начало которой помещено в центр Солнца, а оси направлены на далекие звезды. Вообще всякая система отсчета, движущаяся относительно какой-либо инерциальной системы поступательно, равномерно и прямолинейно, также является инерциальной. Например, поезд, идущий с постоянной скоростью по прямому участку пути. Первый закон постулирует существование инерциальных систем отсчета, но не говорит, какую из множества таких систем предпочтительней выбирать. Однако многочисленные опыты показывают, что все инерциальные системы отсчета являются равноправными. Когда мы говорим о скорости какого-либо тела, мы обязательно должны указать, относительно какой инерциальной системы отсчета она измерена, так как в разных инерциальных системах эта скорость будет различна, хотя бы на тело и не действовали никакие другие тела. Ускорение же тела будет одним и тем же относительно всех инерциальных систем отсчета.

0%

0%

0%

Движется равномерно вверх

0%

Движется ускоренно вверх

0%

Движется замедленно вверх

0%

Космонавты на космической станции демонстрируют первый закон Ньютона

Научно образовательных программа, снятая в Австралии каналом ABC в 1969 году. Ведущий программы Джулиус Семнер Миллер

Второй закон — связь силы с массой и ускорением

Повседневные наблюдения показывают, что ускорение, сообщаемое данному телу, тем больше, чем больше действующая на него сила.

Количественную связь между силой, действующей на тело, и приобретаемым ускорением определяет второй закон Ньютона.

Например, мяч получит тем большее ускорение, чем сильнее его ударят. Рассмотрим следующий опыт. Возьмем два мячика: легкий шарик для пинг-понга и тяжелый железный шарик. Подействуем на них одинаковой силой. Более тяжелый шарик наберет небольшую скорость, то есть его ускорение будет небольшим. Легкий же шарик получит большую скорость.

Модуль ускорения можно рассчитать по формуле, где S – путь, t – время прохождения пути.

Если прикладывать различные силы и записывать полученные ускорения, то можно заметить, что отношение приложенной силе к ускорению постоянно для данного шарика. Это отношение называется массой. Масса является мерой инертности тела, то есть показывает, насколько сильно тело сопротивляется изменению скорости. Чем больше масса тела – тем труднее разогнать или остановить тело.

Итак, мы готовы к тому, чтобы записать второй закон Ньютона. Он звучит так: ускорение, которое получает тело, прямо пропорционально равнодействующей всех сил, действующих на тело, и обратно пропорционально массе тела:

Для того, чтобы производить расчеты на основании второго закона Ньютона, необходимо выбрать единицы силы и массы.

В СИ единицей массы служит килограмм (кг), который представляет собой массу платино-иридиевого тела, хранящегося в Международном бюро мер и весов в Севре (близ Парижа). Это тело называется международным прототипом килограмма.

Масса прототипа близка к массе 1 литра чистой воды при 4°С. Единицей силы в СИ является ньютон (Н), который равен силе, под действием которой тело массы один килограмм получает ускорение один метр на секунду в квадрате.

0%

0%

Космонавты и школьники демонстрируют второй закон Ньютона

Научно образовательных программа, снятая в Австралии каналом ABC в 1969 году. Ведущий программы Джулиус Семнер Миллер

Третий закон или закон действия и противодействия

Силы всегда возникают не в одиночку, а по две сразу: если одно тело действует с некоторой силой на другое («действие»), то и второе тело действует с некоторой силой на первое («противодействие»).

При соударении двух бильярдных шаров изменяют свою скорость оба шара. Земля притягивает Луну (сила всемирного тяготения) и заставляет ее двигаться по криволинейной траектории; в-свою очередь Луна также притягивает Землю. Ускорение Земли, вызываемое этой силой, нельзя обнаружить непосредственно, оно проявляется в виде приливов.

Что же можно сказать о силах, возникающих при взаимодействии двух тел? Грубые измерения сил взаимодействия можно произвести на следующих опытах.

Возьмем два динамометра, зацепим друг за друга их крючки и, взявшись за кольца, будем растягивать их, следя за показаниями обоих динамометров (второй динамометр можно прикрепить к стене).

Мы увидим, что при любых растяжениях показания обоих динамометров будут совпадать; значит, сила, с которой первый динамометр действует на второй, равна силе, с которой второй динамометр действует на первый.

Третий закон Ньютона - Студенческий портал Опыты показывают, что если одно тело действует на другое с некоторой силой, то второе тело действует на первое с силой, равной по модулю и противоположной по направлению. При этом обе силы лежат на одной прямой. Это — закон равенства действия и противодействия, открытый Ньютоном и названный им третьим законом движения. В жизни мы не раз сталкивались с примерами, иллюстрирующими этот закон. Например, в известной игре «перетягивание каната» обе команды действуют друг на друга (через канат) с одинаковыми силами, как это следует из закона действия и противодействия. При этом, выиграет (перетянет канат) не та сторона, которая сильнее тянет, а та, которая сильнее упирается в Землю. Как объяснить, что лошадь везет сани, если сани тянут лошадь назад с такой же по модулю силой, с какой лошадь тянет сани вперед? Третий закон Ньютона - Студенческий портал

Лошадь сдвинет и повезет нагруженные сани, потому что со стороны дороги на ее копыта действуют большие силы трения, чем на скользкие полозья саней

Почему эти силы не уравновешиваются? Дело в том, что, во-первых, хотя эти силы равны и прямо противоположны, они, приложены к разным телам, а во-вторых, и на сани и на лошадь действуют еще и силы со стороны дороги. Сила со стороны лошади приложена к саням, испытывающим, кроме этой силы, лишь небольшую силу трения полозьев о снег, поэтому сани начинают двигаться вперед. К лошади же, помимо силы со стороны саней, направленной назад, приложены со стороны дороги, в которую она упирается ногами, силы, направленные вперед и бóльшие, чем сила со стороны саней. Поэтому лошадь тоже начинает двигаться вперед. Если поставить лошадь на лед, то сила со стороны скользкого льда будет недостаточна, и лошадь не сдвинет сани. То же будет и с очень тяжело нагруженным возом, когда лошадь, даже упираясь ногами, не сможет создать достаточную силу, чтобы сдвинуть воз с места. На идеально скользкой поверхности, от которой нельзя «оттолкнуться», ни сани с лошадью, ни поезд, ни автомобиль не могли бы сдвинуться с места. Третий закон Ньютона позволяет рассчитать явление отдачи при выстреле. Установим на тележку модель пушки, действующую при помощи пара или при помощи пружины. Пусть вначале тележка покоится. Третий закон Ньютона - Студенческий портал

При нагревании пробирки, пробка вылетает в одну сторону, а тележка – в другую

При выстреле «снаряд» (пробка) вылетает в одну сторону, а пушка откатывается в другую. Откат пушки и есть результат отдачи. Отдача есть не что иное, как противодействие со стороны снаряда, действующее, согласно третьему закону Ньютона, на пушку.

Таким образом, ускорения, получаемые пушкой и снарядом, направлены противоположно, а по модулю обратно пропорциональны массам этих тел. В результате снаряд и пушка приобретут противоположно направленные скорости, находящиеся в том же отношении.

Падение тел также строго подчиняется закону противодействия.

Яблоко падает на Землю оттого, что его притягивает земной шар; но точно с такой же силой и яблоко притягивает к себе всю нашу планету. Строго говоря, яблоко и Земля падают друг на друга, но скорость этого падения различна для яблока и для Земли.

Равные силы взаимного притяжения сообщают яблоку ускорение свободного падения, а земному шару — во столько же раз меньшее, во сколько раз масса Земли превышает массу яблока.

Конечно, масса земного шара в неимоверное число раз больше массы яблока, и потому Земля получает перемещение настолько ничтожное, что практически его можно считать равным нулю.

0%

0%

0%

0%

Космонавты и школьники демонстрируют третий закон Ньютона

Научно образовательных программа, снятая в Австралии каналом ABC в 1969 году. Ведущий программы Джулиус Семнер Миллер

По совокупности три закона Ньютона дали физикам инструменты, необходимые для описания всех явлений, происходящих в нашей Вселенной. И, невзирая на все колоссальные подвижки в науке, произошедшие со времен Ньютона, чтобы спроектировать новый автомобиль или отправить космический корабль на Луну, мы воспользуемся все теми же законами Ньютона.

Тела действуют друг на друга силами, сила обозначается буквой F и измеряется в Ньютонах;

3-й закон Ньютона: тела действуют друг на друга с равными по величине и противоположными по направлению силами;

2-й закон Ньютона: под действием силы тело получает ускорение; масса является мерой инертности тела — она показывает, насколько «неохотно» тело набирает скорость, насколько меньшее ускорение получает тело под действием силы;

1-й закон Ньютона говорит о том, где (в каких случаях) работают два других закона Ньютона; они работают в инерциальных системах (системах, которые двигаются без ускорения); в таких системах, если на тело не действуют никакие силы или действие всех сил скомпенсировано, то тело не меняет направления и скорости своего движения или же находится в покое.

Третий закон Ньютона - Студенческий портал

Выходное тестирование

Проверь как изучил урок

Ты еще не готов к этому уроку

Начинай изучать урок

Предыдущий урок

Внешняя политика Николая I

Урок разработали

Можно копировать, распространять, улучшать, при условии указания авторства, ссылки на урок и сохранения данной лицензии у производного материала

Под свободной лицензиейCC-BY-SA-4.0

  • Г.С. Ландсберг Элементарный учебник физики, том 1.
  • Серия «Основательная подготовка к ЕГЭ за 50 недель.» Е.Н.Евлахова, Н.В. Бондаренко. Физика.
  • Сайты lampa.io, zaochnik.ru, physics.ru, Wikipedia.ru, elementy.ru.
  • Я.И. Перельман Занимательная механика

Помогите улучшить

Мы рады любой помощи по улучшению урока. Пишите комментарии с предложениями, отмечайте понятные или непонятные элементы урока.

Источник: https://microschool.io/ru/book/physics/sily-zakony-nyutona

Законы Ньютона для

Мы уже говорили об основах классической механики. Настала пора поговорить о них подробнее и затронуть в обсуждении чуть больше, чем просто основу. В этой статье мы подробно разберем основные законы классической механики. Как вы уже догадались, речь пойдет о законах Ньютона.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Основные законы классической механики Исаак Ньютон (1642-1727) собрал и опубликовал в 1687 году. Три знаменитых закона были включены в труд, который назывался «Математические начала натуральной философии».

  • Был долго этот мир глубокой тьмой окутан
    Да будет свет, и тут явился Ньютон.
  • (Эпиграмма 18-го века)
  • Но сатана недолго ждал реванша —
    Пришел Эйнштейн, и стало все как раньше.
  • (Эпиграмма 20-го века)

Что стало, когда пришел Эйнштейн, читайте в отдельном материале про релятивистскую динамику. А мы пока приведем формулировки и примеры решения задач на каждый закон Ньютона.

Первый закон Ньютона

Первый закон Ньютона гласит:

Существуют такие системы отсчета, называемые инерциальными, в которых тела движутся равномерно и прямолинейно, если на них не действуют никакие силы или действие других сил скомпенсировано.

Проще говоря, суть первого закона Ньютона можно сформулировать так: если мы на абсолютно ровной дороге толкнем тележку и представим, что можно пренебречь силами трения колес и сопротивления воздуха, то она будет катиться с одинаковой скоростью бесконечно долго.

Инерция – это способность тела сохранять скорость как по направлению, так и по величине, при отсутствии воздействий на тело. Первый закон Ньютона еще называют законом инерции.

До Ньютона закон инерции был сформулирован в менее четкой форме Галилео Галилеем. Инерцию ученый называл «неистребимо запечатленным движением». Закон инерции Галилея гласит: при отсутствии внешних сил тело либо покоится, либо движется равномерно. Огромная заслуга Ньютона в том, что он сумел объединить принцип относительности Галилея, собственные труды и работы других ученых в своих «Математических началах натуральной философии».

Понятно, что таких систем, где тележку толкнули, а она покатилась без действия внешних сил, на самом деле не бывает. На тела всегда действуют силы, причем скомпенсировать действие этих сил полностью практически невозможно.

Например, все на Земле находится в постоянном поле силы тяжести. Когда мы передвигаемся (не важно, ходим пешком, ездим на машине или велосипеде), нам нужно преодолевать множество сил: силу трения качения и силу трения скольжения, силу тяжести, силу Кориолиса.

Третий закон Ньютона - Студенческий портал
 

Второй закон Ньютона

Помните пример про тележку? В этот момент мы приложили к ней силу! Интуитивно понятно, что тележка покатится и вскоре остановится. Это значит, ее скорость изменится.

В реальном мире скорость тела чаще всего изменяется, а не остается постоянной. Другими словами, тело движется с ускорением. Если скорость нарастает или убывает равномерно, то говорят, что движение равноускоренное.

Если рояль падает с крыши дома вниз, то он движется равноускоренно под действием постоянного ускорения свободного падения g. Причем любой дугой предмет, выброшенный из окна на нашей планете, будет двигаться с тем же ускорением свободного падения.

Второй закон Ньютона устанавливает связь между массой, ускорением и силой, действующей на тело. Приведем формулировку второго закона Ньютона:

Ускорение тела (материальной точки) в инерциальной системе отсчета прямо пропорционально приложенной к нему силе и обратно пропорционально массе.

Третий закон Ньютона - Студенческий портал
Третий закон Ньютона - Студенческий портал
 

Если на тело действует сразу несколько сил, то в данную формулу подставляется равнодействующая всех сил, то есть их векторная сумма.

В такой формулировке второй закон Ньютона применим только для движения со скоростью, много меньшей, чем скорость света.

Существует более универсальная формулировка данного закона,  так называемый дифференциальный вид.

Третий закон Ньютона - Студенческий портал

В любой бесконечно малый промежуток времени dt сила, действующая на тело, равна производной импульса тела по времени.

Третий закон Ньютона

В чем состоит третий закон Ньютона? Этот закон описывает взаимодействие тел.

3 закон Ньютона говорит нам о том, что на любое действие найдется противодействие. Причем, в прямом смысле:

Два тела воздействуют друг на друга с силами, противоположными по направлению, но равными по модулю.

Формула, выражающая третий закон Ньютона:

Третий закон Ньютона - Студенческий портал

Другими словами, третий закон Ньютона — это закон действия и противодействия.

Третий закон Ньютона - Студенческий портал
 

Пример задачи на законы Ньютона

Вот типичная задачка на применение законов Ньютона. В ее решении используются первый и второй законы Ньютона.

Десантник раскрыл парашют и опускается вниз с постоянной скоростью. Какова сила сопротивления воздуха? Масса десантника – 100 килограмм.

Решение:  

Движение парашютиста – равномерное и прямолинейное, поэтому, по первому закону Ньютона, действие сил на него скомпенсировано.

На десантника действуют сила тяжести и сила сопротивления воздуха. Силы направлены в противоположные стороны.

По второму закону Ньютона, сила тяжести равна ускорению свободного падения, умноженному на массу десантника.

Третий закон Ньютона - Студенческий портал

  1. Ответ: Сила сопротивления воздуха равна силе тяжести по модулю и противоположна направлена.
  2. Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
  3. А вот еще одна физическая задачка на понимание действия третьего закона Ньютона.

Комар ударяется о лобовое стекло автомобиля. Сравните силы, действующие на автомобиль и комара.

Решение:

По третьему закону Ньютона, силы, с которыми тела действуют друг на друга, равны по модулю и противоположны по направлению. Сила, с которой комар действует на автомобиль, равна силе, с которой автомобиль действует на комара.

Другое дело, что действие этих сил на тела сильно отличаются вследствие различия масс и ускорений.

Исаак Ньютон: мифы и факты из жизни

На момент публикации своего основного труда Ньютону было 45 лет. За свою долгую жизнь ученый внес огромный вклад в науку, заложив фундамент современной физики и определив ее развитие на годы вперед.

Он занимался не только механикой, но и оптикой, химией и другими науками, неплохо рисовал и писал стихи. Неудивительно, что личность Ньютона окружена множеством легенд.

Ниже приведены некоторые факты и мифы из жизни И. Ньютона. Сразу уточним, что миф – это не достоверная информация. Однако мы допускаем, что мифы и легенды не появляются сами по себе и что-то из перечисленного вполне может оказаться правдой.

  • Факт. Исаак Ньютон был очень скромным и застенчивым человеком. Он увековечил себя благодаря своим открытиям, однако сам никогда не стремился к славе и даже пытался ее избежать.
  • Миф. Существует легенда, согласно которой Ньютона осенило, когда на наго в саду упало яблоко. Это было время чумной эпидемии (1665-1667), и ученый был вынужден покинуть Кембридж, где постоянно трудился. Точно неизвестно, действительно ли падение яблока было таким роковым для науки событием, так как первые упоминания об этом появляются только в биографиях ученого уже после его смерти, а данные разных биографов расходятся.
  • Факт. Ньютон учился, а потом много работал в Кембридже. По долгу службы ему нужно было несколько часов в неделю вести занятия у студентов. Несмотря на признанные заслуги ученого, занятия Ньютона посещались плохо. Бывало, что на его лекции вообще никто не приходил. Скорее всего, это связано с тем, что ученый был полностью поглощен своими собственными исследованиями.
  • Миф. В 1689 году Ньютон был избран членом Кембриджского парламента. Согласно легенде, более чем за год заседания в парламенте вечно поглощенный своими мыслями ученый взял слово для выступления всего один раз. Он попросил закрыть окно, так как был сквозняк.
  • Факт. Неизвестно, как бы сложилась судьба ученого и всей современной науки, если бы он послушался матери и начал заниматься хозяйством на семейной ферме. Только благодаря уговорам учителей и своего дяди юный Исаак отправился учиться дальше вместо того, чтобы сажать свеклу, разбрасывать по полям навоз и по вечерам выпивать в местных пабах.

Дорогие друзья, помните — любую задачу можно решить! Если у вас возникли проблемы с решением задачи по физике, посмотрите на основные физические формулы. Возможно, ответ перед глазами, и его нужно просто рассмотреть. Ну а если времени на самостоятельные занятия совершенно нет, специализированный студенческий сервис всегда к вашим услугам!

В самом конце предлагаем посмотреть видеоурок на тему «Законы Ньютона».

Источник: https://Zaochnik-com.ru/blog/zakony-nyutona-dlya-chajnikov-obyasnenie-primer/

Законы Ньютона

Законы Ньютона являются основополагающими в классической механике и однозначно, поворотным моментом в физике. Это своего рода объединение накопленных к тому времени знаний о физических телах и их движении в законы.

Закон Ньютона первый выдвигает в качестве исходного положения инерцию тела. Именно в связи с этим данный закон иногда трактуют как Закон Инерции. Что же подразумевает данная сила. Под инерцией понимается, сохранение скорости движения тела, при условии что на тело не воздействуют силы.

Для изменения скорости движения тел, нужно воздействие на него силой. Действие одной и той же силы на разные тела будет различное, из чего следует что различное тело имеет свою инертность. А значит инертность тела — это сопротивление тела к изменениям их прежнего состояния.

Значение инертности зависит от массы тела.

Определение первого закона Ньютона в наши дни:
Третий закон Ньютона - Студенческий портал

Второй закон Ньютона
отличительный закон о движении, раскрывающий связь приложенной силы и полученного ускорения. Используя массу тела в виде меры означающей инертность мат. точки в конкретной ИСО.

Определение второго закона Ньютона с наши дни: Третий закон Ньютона - Студенческий портал
Закон Ньютона формула
а = F /m

в которой а ? — приходиться ускорением; F ? — постоянная всех сил; m -приходиться массой.

Для ИСО изменение скорости импульсов тела равняется постоянной от всех сил.

dp /dt = F

в которой p — приходится импульсом, t — время.

Третий закон Ньютона дает описание взаимодействия двух материальных точек. Рассмотрим две точки находящиеся в замкнутой системе. Одна из которых воздействует на другую с силой F ?1?2, а другая в обратную с силой F ?2?1. Из чего следует, сила действия равна силе противодействия.

Добавление: При воздействии на одно тело несколькими силами, данный закон записывается как:

Третий закон Ньютона - Студенческий портал
либо
Третий закон Ньютона - Студенческий портал

Для второго закона Ньютона, существует только для передвижения тел, меньшей чем скорость света.

Определение второго закона Ньютона с наши дни:
Третий закон Ньютона - Студенческий портал

Третий закон дает понять, силы возникают только парно, при этом появление каждой из них будет благодаря другой. Другими словами. Появление сил самостоятельно, не имеющих взаимодействия с другими телами, не является возможным.
Первой публикацией (более приближен к первому закону) был Галилей, который говорил о свободном продвижении и по линии и по кругу (астрономия). Тем самым положив начало всем законам Ньютона.

Заметка: Любите фотографировать, но на качественное и дорогое оборудование не хватает денег? Это не беда! Ведь есть аренда объективов (http://zoom-prokat.ru/) и не только. Перейдя по ссылке Вы найдете все что вам нужно.

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Источник: https://reshit.ru/Zakony-Nyutona

Третий закон Ньютона: определение и формула

  • Определение третьего закона Ньютона
  • Формула третьего закона Ньютона
  • Пример задачи на третий закон Ньютона
  • Рекомендованная литература и полезные ссылки
  • Третий закон Ньютона, видео
  • Наши прошлые статьи о первом и втором законах открытых великим английским физиком Исааком Ньютоном были бы не полными, если б мы не написали о последнем третьем законе Ньютона, описывающем взаимодействие тел. В чем его суть, какая его формула, об этом читайте далее.

    Определение третьего закона Ньютона

    Третий закон Ньютона говорит нам, о том, что на всякое действие найдется свое противодействие. Академическое определение звучит так: «Два тела воздействуют друг на друга с силами, противоположными по направлению, но равными по модулю».

    Как видите, это, по сути, закон действия и противодействия.

    Формула третьего закона Ньютона

    Исходя из вышесказанного, формулу для третьего закона Ньютона можно написать так:

    F1 = -F2

    Где F1 и F2 – разные силы, действующие на одно и то же тело. Как мы видим, силы равные за модулем (или силы равные за силой, простите за тавтологию), но при этом с разным направлением, уравновешивают друг друга.

    Пример задачи на третий закон Ньютона

    Попробуем проиллюстрировать третий закон Ньютона на примере практической задачи.

    Представим, некий десантник спускается на парашюте. Спускается он с постоянной скоростью, обусловленной силой земной гравитации, какая при этом будет сила сопротивления воздуха, притом, что масса десантника 100 кг.

    Согласно второму закону Ньютона сила гравитации равна ускорению свободного падения, умноженному на массу десантника.

    Но согласно третьему закону Ньютона помимо силы тяжести на десантника еще действует уравновешивающая сила сопротивления воздуха, позволяющая ему совершить плавное приземление.

    Третий закон нам говорит, что сила сопротивления воздуха равна силе гравитации. Итак, получаем следующее:

    Третий закон Ньютона - Студенческий портал

    Рекомендованная литература и полезные ссылки

    • Лич Дж. У. Классическая механика. М.: Иностр. литература, 1961.
    • Спасский Б. И.. История физики. М., «Высшая школа», 1977.
    • Кудрявцев П. С. Курс истории физики. — М.: Просвещение, 1974.
    • Crowell, Benjamin (2011), Light and Matter (2011, Light and Matter), especially at Section 4.2, Newton’s First Law, Section 4.3, Newton’s Second Law, and Section 5.1, Newton’s Third Law.
    • Feynman, R. P. (англ.)русск.; Leighton, R. B.; Sands, M. The Feynman Lectures on Physics (неопр.). — 2nd. — Pearson/Addison-Wesley, 2005. — Т. Vol. 1. — ISBN 0-8053-9049-9.

    Третий закон Ньютона, видео

    И в завершении образовательное видео по теме нашей статьи.

    Третий закон Ньютона - Студенческий портал

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Источник: https://www.poznavayka.org/fizika/tretij-zakon-nyutona/

    Третий закон Ньютона — Класс!ная физика

    «Физика — 10 класс»

    Какие силы возникают при взаимодействии тел? В чём проявляется взаимодействие тел?

    Какова природа сил взаимодействия?

    В третьем законе Ньютона формулируется одно общее свойство всех сил, рассматриваемых в механике: любое действие тел друг на друга носит характер взаимодействия. Это означает, что если тело А действует на тело В, то и тело В действует на тело А.

    Взаимодействие тел.

    Примеров взаимодействия тел и сообщения ими друг другу ускорений можно привести сколь угодно много. Когда вы, находясь в одной лодке, начнёте за верёвку подтягивать другую лодку, то и ваша лодка обязательно будет двигаться к ней (рис. 2.24). Вы действуете на верёвку, и верёвка действует на вас.

    Третий закон Ньютона - Студенческий портал

    Если вы ударите ногой по футбольному мячу или толкнёте плечом товарища, то ощутите обратное действие на ногу или плечо. Всё это проявления закона взаимодействия тел.

    Действия тел друг на друга носят характер взаимодействия не только при непосредственном контакте тел. Положите на гладкий стол два сильных магнита разноимёнными полюсами навстречу друг другу, и вы тут же обнаружите, что они начнут двигаться навстречу друг другу.

    Изменения скоростей обоих взаимодействующих тел легко наблюдаются лишь в тех случаях, когда массы этих тел мало отличаются друг от друга.

    Если же взаимодействующие тела значительно различаются по массе, заметное ускорение получает только то из них, которое имеет меньшую массу.

    Так, при падении камня мы видим, что камень движется с ускорением, но ускорение Земли (а ведь камень тоже притягивает Землю!) практически обнаружить нельзя, так как оно очень мало.

    Силы взаимодействия двух тел.

    Выясним с помощью опыта, как связаны между собой силы взаимодействия двух тел.

    Третий закон Ньютона - Студенческий портал

    Возьмём достаточно сильный магнит и железный брусок, установим их на катки для уменьшения трения о стол (рис. 2.25). К концам магнита и бруска прикрепим одинаковые пружины, закреплённые другими концами на столе. Магнит и брусок притянутся друг к другу и растянут пружины.

    • Опыт показывает, что к моменту прекращения движения пружины растянуты совершенно одинаково.
    • Это означает, что на оба тела со стороны пружин действуют одинаковые по модулю и противоположные по направлению силы:
    • 1 = -2         (2.5)
    • Так как магнит покоится, то сила 2 равна по модулю и противоположна по направлению силе 4, с которой на него действует брусок:

    2 = -4.         (2.6)

    1. Точно так же равны по модулям и противоположны по направлению силы, действующие на брусок со стороны магнита и пружины:
    2. 3 = -1         (2.7)
    3. Отсюда следует, что силы, с которыми взаимодействуют магнит и брусок, равны по модулю и противоположны по направлению:
    4. 3 = -4         (2.8)
    5. Третий закон Ньютона.
    6. На основе подобных опытов можно сформулировать третий закон Ньютона.
    7. Силы, с которыми тела действуют друг на друга, равны по модулю и направлены по одной прямой в противоположные стороны.

    Если на тело А со стороны тела В действует сила A (рис. 2.26), то одновременно на тело В со стороны тела А будет действовать сила B, причём

    • A = -B         (2.9)
    • Отметим, что силы взаимодействия двух тел — силы одной физической природы, время их действия одинаково, но они приложены к разным телам, следовательно, действие первого тела на второе не может быть скомпенсировано действием второго тела на первое.
    • Используя второй закон Ньютона, равенство (2.6) можно записать так:

    m11 = -m22. (2.10)

    Отсюда следует, что

    т. е. отношение модулей ускорений а1 и а2 взаимодействующих друг с другом тел обратно пропорционально их массам (см. формулу (2.3) на с. 76).

    Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

    Следующая страница «Геоцентрическая система отсчёта» Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»

    Динамика — Физика, учебник для 10 класса — Класс!ная физика

    Основное утверждение механики — Сила — Инертность тела. Масса.

    Единица массы — Первый закон Ньютона — Второй закон Ньютона — Принцип суперпозиции сил — Примеры решения задач по теме «Второй закон Ньютона» — Третий закон Ньютона — Геоцентрическая система отсчёта — Принцип относительности Галилея.

    Инвариантные и относительные величины — Силы в природе — Сила тяжести и сила всемирного тяготения — Сила тяжести на других планетах — Примеры решения задач по теме «Закон всемирного тяготения» — Первая космическая скорость — Примеры решения задач по теме «Первая космическая скорость» — Вес. Невесомость — Деформация и силы упругости. Закон Гука — Примеры решения задач по теме «Силы упругости. Закон Гука» — Силы трения — Примеры решения задач по теме «Силы трения» — Примеры решения задач по теме «Силы трения» (продолжение) —

    Источник: http://class-fizika.ru/10_a26.html

    Первый, второй и третий законы Ньютона: краткое описание, формулы, примеры

    В этой статье пойдет речь о том, как правильно трактовать законы Ньютона. Для полного понятия первого, второго и третьего законов Исаака Ньютона будут предоставлены примеры их применения и примеры решения задач.

    Ньютон вложил свой огромный вклад в основы классической механики благодаря трем законам. Еще в 1967 году он написал работу, которая называлась: Математические начала натуральной философии.

    В рукописи он описал все познания не только свои, а и других ученых умов. Именно Исаака Ньютона ученые-физики считают основоположником данной науки.

    Особой популярностью пользуются первый, второй и третий законы Ньютона, вот о них и пойдет речь далее.

    Законы Ньютона: первый закон

    Как трактуется первый закон Ньютона?

    ВАЖНО: Уметь не только формулировать первый, второй и третий законы Ньютона, а еще и с легкостью их осуществлять на практике. И тогда вы сможете решать сложные задачи.

    В первом законе говорится о системах отсчета, которые именуются инерциальными. В данных системах тела двигаются прямолинейно, равномерно (т.е. с одной и той же скоростью, по прямой), в том случае, когда на эти тела не воздействуют другие силы либо их влияние скомпенсировано.

    Чтобы проще понять правило, можно его перефразировать.

    Точнее привести такой пример: если взять предмет на колесах и толкнуть его, то изделие будет ехать практически бесконечно в том случае, когда на него не будет воздействовать сила трения, сила сопротивления воздушных масс и дорога будет ровной.

    Гдетакое понятие, как инерция, представляет собой способность предмета не менять скорость ни по направлению, не по величине. Еще в физике первую трактовку закона Ньютона считают инерциальной.

    До открытия правила Исааком Ньютоном Галилео Галилей тоже изучал инерцию и по его утверждению закон звучал следующим образом: если нет никаких сил, которые действуют на предмет, то он либо не движется, либо перемещается равномерно. Ньютон же смог более конкретно объяснить данный принцип относительности тела и сил, что воздействуют на него.

    Естественно на Земле не бывает систем, в которых может действовать это правило. Когда какой-то предмет можно толкнуть и он будет равномерно двигаться по прямой, не останавливаясь.

    На тело в любом случае будут влиять разные силы, их воздействие на предмет скомпенсировать нельзя. Уже одна сила притяжения Земли создает влияние на передвижение любого тела или предмета.

    Также кроме нее есть сила трения, скольжения, Кориолиса и т.д.

    Законы Ньютона: второй закон

    Открытые законы Ньютона еще в прошлом веке, в комплексе дают возможность ученым вести наблюдения за различными процессами, что происходят во Вселенной благодаря созданию новых технологических конструкций, машин.

    Второй закон Ньютона

    Чтобы узнать, какие бывают причины движения, следует обратиться ко второму закону Ньютона. Именно здесь вы найдете объяснения. Благодаря ему можно решить различные задачи по теме – механика. Так же поняв его суть, вы сможете использовать его в жизни.

    Первоначально он формулировался следующим образом – изменение импульса (количества передвижения) равно силе, что заставляет тело двигаться, деленное на переменную времени. Также движение предмета совпадает с направлением действия силы.

    • Чтобы было понятно записывается это следующим образом:
    • F = Δp/Δt
    • Символ Δ представляет собой разность, именуется дифференциалом, p – это импульс (или скорость), а t – это время.

    Геометрический смысл

    По правилам:

    Исходя из этого:

    • F = m · Δv/Δp, а  значение: Δv/Δp = a

    Вот теперь-то формула приобретает такой вид: F = m · a; из этого равенства можно найти

    Второй закон Ньютона трактуется следующим образом:

    Ускорение, движущегося предмета равно частному, полученному в результате деления силы на массу тела или же предмета. Соответственно, чем сильнее приложится сила к предмету, тем больше его ускорение, а если масса тела больше, то ускорение предмета меньше. Это утверждение считается базовым законом механики.

    Формула — закон Ньютона

    F – в формуле обозначает сумму (геометрическую) всех сил или равнодействующую.

    Равнодействующая сила представляет собой сумму величин (векторных). Причем складывать эти значения следует по правилам параллелограмма либо же треугольника. Идеально для получения ответа знать цифровые значения сил, воздействующих на предмет и величину угла между векторами сил.

    Это правило можно применять как в инерциальных, так неинерциальных системах. Оно действует для произвольных предметов, материальных тел. Чтобы было понятней, если система неинерциальная, то применяют еще такие силы, как: центробежная, сила Кориолиса, в математике, это пишется так:

    ma = F + Fi, где Fi – инерциальная сила.

    Как применяется закон Ньютона?

    Итак пример: представьте себе, что машина ехала по бездорожью и застряла. На помощь водителю приехал другой автомобиль, и водитель второго автомобиля пытается с помощью троса вытянуть авто. Формула Ньютона для первого транспортного средства будет выглядеть так:

    ma = F нат.нити + Fтяги — Fтрения

    Допустим, что геометрическая всех сил приравнивается к 0. Тогда автомобиль или же будет равномерно ехать, либо будет стоять.

    Примеры решения задач:

    • Через ролик перекинули веревку. С одной стороны ролика висит на веревке груз, с другой стороны альпинист, причем масса груза и человека идентична. Что будет с веревкой и роликом, когда альпинист будет подниматься по ней вверх. Силой трения ролика, массой самой веревки можно пренебречь.
    1. Решение задачи
    2. По второму закону Ньютона формулу математически можно составить так:
    • ma1 = Fнат.нити1 — mgma1 = Fнат.нити1 — mg – это второй закон для альпиниста
    • ma2 = Fнат.нити2 — mgma2 = Fнат.нити2 — mg — так математически можно трактовать закон Ньютона для груза
    • По условию: Fнат.нити1 = Fнат.нити2
    • Отсюда: ma1 = ma2

    Если правую и левую часть неравенства разделить на m, то получится, что ускорение и подвешенного груза и поднимающегося человека равнозначны.

    Законы Ньютона: третий закон

    Третий закон Ньютона имеет такую формулировку: тела имеют свойство взаимодействовать друг с другом с одинаковыми силами, эти силы направляются по одной линии, но имеют разные направления. В математике – это может выглядеть следующим образом:

    Fn = — Fn1

    третий закон Исаака Ньютона

    Пример его действия

    Для более тщательного его изучения рассмотрим пример. Представьте старинную пушку, которая стреляет большими ядрами. Так вот – ядро, которое вытолкнет грозное оружие, будет воздействовать на нее с такой же силой, с какой она его и вытолкнет.

    Fя = — Fп

    Потому и происходит откат орудия назад при выстреле. Но ядро улетит далеко, а пушка сдвинется немного в противоположную сторону, это происходит потому, что у орудия и ядра различная масса. Тоже произойдет и при падении на Землю любого предмета. Но реакции Земли заметить невозможно ведь все падающие предметы в миллионы раз весят меньше нашей планеты.

    Вот еще пример третьего правила классической механики: рассмотрим притяжение разных планет. Вокруг нашей планеты вращается Луна. Это происходит по средствам притяжения к Земле.

    Но и Луна тоже притягивает Землю – согласно третьему закону Исаака Ньютона. Однако массы круглых планет разные.

    Потому Луна не способна притягивать большую планету Землю к себе, но она может вызывать приливы воды в морях, океанах и отливы.

    Задача

    • Насекомое ударяется в стекло машины. Какие возникают силы, и как они действуют на насекомое и авто?

    Решение задачи:

    Согласно третьему закону Ньютона, тела или предметы при воздействии друг на друга имеют равные силы по модулю, но по направлению – противоположные.

    Исходя из данного утверждения получается следующее решение данной задачи: насекомое воздействует на автомобиль с той же силой, что и авто воздействует на него.

    Но само действие сил несколько разнится, ведь масса и ускорение машины и насекомого различные.

    Видео: Первый, второй и третий законы Ньютона

    Источник: https://heaclub.ru/pervyj-vtoroj-i-tretij-zakony-nyutona-kratkoe-opisanie-formuly-primery

    Законы механики Ньютона

    Законы Ньютона — в зависимости от того, под каким углом на них посмотреть, — представляют собой либо конец начала, либо начало конца классической механики.

    В любом случае это поворотный момент в истории физической науки — блестящая компиляция всех накопленных к тому историческому моменту знаний о движении физических тел в рамках физической теории, которую теперь принято именовать классической механикой.

    Можно сказать, что с законов движения Ньютона пошел отсчет истории современной физики и вообще естественных наук.

    Однако Исаак Ньютон взял названные в его честь законы не из воздуха. Они, фактически, стали кульминацией долгого исторического процесса формулирования принципов классической механики. Мыслители и математики — упомянем лишь Галилея (см.

    Уравнения равноускоренного движения) — веками пытались вывести формулы для описания законов движения материальных тел — и постоянно спотыкались о то, что лично я сам для себя называю непроговоренными условностями, а именно — обе основополагающие идеи о том, на каких принципах зиждется материальный мир, которые настолько устойчиво вошли в сознание людей, что кажутся неоспоримыми. Например, древним философам даже в голову не приходило, что небесные тела могут двигаться по орбитам, отличающимся от круговых; в лучшем случае возникала идея, что планеты и звезды обращаются вокруг Земли по концентрическим (то есть вложенным друг в друга) сферическим орбитам. Почему? Да потому, что еще со времен античных мыслителей Древней Греции никому не приходило в голову, что планеты могут отклоняться от совершенства, воплощением которой и является строгая геометрическая окружность. Нужно было обладать гением Иоганна Кеплера, чтобы честно взглянуть на эту проблему под другим углом, проанализировать данные реальных наблюдений и вывести из них, что в действительности планеты обращаются вокруг Солнца по эллиптическим траекториям (см. Законы Кеплера).

    Первый закон Ньютона

    Учитывая столь серьезный, исторически сложившийся провал, первый закон Ньютона сформулирован безоговорочно революционным образом. Он утверждает, что если какую-либо материальную частицу или тело попросту не трогать, оно будет продолжать прямолинейно двигаться с неизменной скоростью само по себе.

    Если тело равномерно двигалось по прямой, оно так и будет двигаться по прямой с неизменной скоростью. Если тело покоилось, оно так и будет покоиться, пока к нему не приложат внешних сил. Чтобы просто сдвинуть физическое тело с места, к нему нужно обязательно приложить стороннюю силу.

    Возьмем самолет: он ни за что не стронется с места, пока не будут запущены двигатели. Казалось бы, наблюдение самоочевидное, однако, стоит нам отвлечься от прямолинейного движения, как оно перестает казаться таковым.

    При инерционном движении тела по замкнутой циклической траектории его анализ с позиции первого закона Ньютона только и позволяет точно определить его характеристики.

    Представьте себе что-то типа легкоатлетического молота — ядро на конце струны, раскручиваемое вами вокруг вашей головы.

    Ядро в этом случае движется не по прямой, а по окружности — значит, согласно первому закону Ньютона, его что-то удерживает; это «что-то» — и есть центростремительная сила, которую вы прилагаете к ядру, раскручивая его.

    Реально вы и сами можете ее ощутить — рукоять легкоатлетического молота ощутимо давит вам на ладони. Если же вы разожмете руку и выпустите молот, он — в отсутствие внешних сил — незамедлительно отправится в путь по прямой.

    Точнее будет сказать, что так молот поведет себя в идеальных условиях (например, в открытом космосе), поскольку под воздействием силы гравитационного притяжения Земли он будет лететь строго по прямой лишь в тот момент, когда вы его отпустили, а в дальнейшем траектория полета будет всё больше отклоняться в направлении земной поверхности. Если же вы попробуете действительно выпустить молот, выяснится, что отпущенный с круговой орбиты молот отправится в путь строго по прямой, являющейся касательной (перпендикулярной к радиусу окружности, по которой его раскручивали) с линейной скоростью, равной скорости его обращения по «орбите».

    Теперь заменим ядро легкоатлетического молота планетой, молотобойца — Солнцем, а струну — силой гравитационного притяжения: вот вам и ньютоновская модель Солнечной системы.

    Такой анализ происходящего при обращении одного тела вокруг другого по круговой орбите на первый взгляд кажется чем-то само собой разумеющимся, но не стоит забывать, что он вобрал в себя целый ряд умозаключений лучших представителей научной мысли предшествующего поколения (достаточно вспомнить Галилео Галилея). Проблема тут в том, что при движении по стационарной круговой орбите небесное (и любое иное) тело выглядит весьма безмятежно и представляется пребывающим в состоянии устойчивого динамического и кинематического равновесия. Однако, если разобраться, сохраняется только модуль (абсолютная величина) линейной скорости такого тела, в то время как ее направление постоянно меняется под воздействием силы гравитационного притяжения. Это и значит, что небесное тело движется равноускоренно. Кстати, сам Ньютон называл ускорение «изменением движения».

    Первый закон Ньютона играет и еще одну важную роль с точки зрения нашего естествоиспытательского отношения к природе материального мира. Он подсказывает нам, что любое изменение в характере движения тела свидетельствует о присутствии внешних сил, воздействующих на него.

    Условно говоря, если мы наблюдаем, как железные опилки, например, подпрыгивают и налипают на магнит, или, доставая из сушилки стиральной машины белье, выясняем, что вещи слиплись и присохли одна к другой, мы можем чувствовать себя спокойно и уверенно: эти эффекты стали следствием действия природных сил (в приведенных примерах это силы магнитного и электростатического притяжения соответственно).

    Второй закон Ньютона

    Если первый закон Ньютона помогает нам определить, находится ли тело под воздействием внешних сил, то второй закон описывает, что происходит с физическим телом под их воздействием.

    Чем больше сумма приложенных к телу внешних сил, гласит этот закон, тем большее ускорение приобретает тело. Это раз. Одновременно, чем массивнее тело, к которому приложена равная сумма внешних сил, тем меньшее ускорение оно приобретает. Это два.

    Интуитивно эти два факта представляются самоочевидными, а в математическом виде они записываются так:

        F = ma

    где F — сила, m — масса, а — ускорение. Это, наверное, самое полезное и самое широко используемое в прикладных целях из всех физических уравнений. Достаточно знать величину и направление всех сил, действующих в механической системе, и массу материальных тел, из которых она состоит, и можно с исчерпывающей точностью рассчитать ее поведение во времени.

    Именно второй закон Ньютона придает всей классической механике ее особую прелесть — начинает казаться, будто весь физический мир устроен, как наиточнейший хронометр, и ничто в нем не ускользнет от взгляда пытливого наблюдателя.

    Назовите мне пространственные координаты и скорости всех материальных точек во Вселенной, словно говорит нам Ньютон, укажите мне направление и интенсивность всех действующих в ней сил, и я предскажу вам любое ее будущее состояние.

    И такой взгляд на природу вещей во Вселенной бытовал вплоть до появления квантовой механики.

    Третий закон Ньютона

    За этот закон, скорее всего, Ньютон и снискал себе почет и уважение со стороны не только естествоиспытателей, но и ученых-гуманитариев и попросту широких масс.

    Его любят цитировать (по делу и без дела), проводя самые широкие параллели с тем, что мы вынуждены наблюдать в нашей обыденной жизни, и притягивают чуть ли не за уши для обоснования самых спорных положений в ходе дискуссий по любым вопросам, начиная с межличностных и заканчивая международными отношениями и глобальной политикой. Ньютон, однако, вкладывал в свой названный впоследствии третьим закон совершенно конкретный физический смысл и едва ли замышлял его в ином качестве, нежели как точное средство описания природы силовых взаимодействий. Закон этот гласит, что если тело А воздействует с некоей силой на тело В, то тело В также воздействует на тело А с равной по величине и противоположной по направлению силой. Иными словами, стоя на полу, вы воздействуете на пол с силой, пропорциональной массе вашего тела. Согласно третьему закону Ньютона пол в это же время воздействует на вас с абсолютно такой же по величине силой, но направленной не вниз, а строго вверх. Этот закон экспериментально проверить нетрудно: вы постоянно чувствуете, как земля давит на ваши подошвы.

    Тут важно понимать и помнить, что речь у Ньютона идет о двух силах совершенно разной природы, причем каждая сила воздействует на «свой» объект.

    Когда яблоко падает с дерева, это Земля воздействует на яблоко силой своего гравитационного притяжения (вследствие чего яблоко равноускоренно устремляется к поверхности Земли), но при этом и яблоко притягивает к себе Землю с равной силой.

    А то, что нам кажется, что это именно яблоко падает на Землю, а не наоборот, это уже следствие второго закона Ньютона. Масса яблока по сравнению с массой Земли низка до несопоставимости, поэтому именно его ускорение заметно для глаз наблюдателя.

    Масса же Земли, по сравнению с массой яблока, огромна, поэтому ее ускорение практически незаметно. (В случае падения яблока центр Земли смещается вверх на расстояние менее радиуса атомного ядра.)

    По совокупности же три закона Ньютона дали физикам инструменты, необходимые для начала комплексного наблюдения всех явлений, происходящих в нашей Вселенной. И, невзирая на все колоссальные подвижки в науке, произошедшие со времен Ньютона, чтобы спроектировать новый автомобиль или отправить космический корабль на Юпитер, вы воспользуетесь все теми же тремя законами Ньютона.

    См. также:

    Источник: https://elementy.ru/trefil/22/Zakony_mekhaniki_Nyutona

    Ссылка на основную публикацию