Резистор – это самый распространенный радиоэлемент во всей радиоэлектронной промышленности.
Я могу со 100% уверенностью сказать, что абсолютно на любой плате какого-либо устройства вы найдете хотя бы один резистор.
Резистор имеет важное свойство – он обладает активным сопротивлением электрическому току. Существует также и реактивное сопротивление. Подробнее про реактивное и активное сопротивление.
Постоянные резисторы
Постоянное резисторы выглядят примерно вот так:
Слева мы видим большой зеленый резистор, который рассеивает очень большую мощность. Справа – маленький крохотный SMD резистор, который рассеивает очень маленькую мощность, но при этом отлично выполняет свою функцию. Про то, как определить сопротивление резистора, можно прочитать в статье маркировка резисторов.
- Вот так выглядит постоянный резистор на электрических схемах:
- Наше отечественное изображение резистора изображают прямоугольником (слева), а заморский вариант (справа), или как говорят – буржуйский, используется в иностранных радиосхемах.
- Вот так маркируются мощности на советских резисторах:
Далее мощность маркируется с помощью римских цифр. V – 5 Ватт, X – 10 Ватт, L -50 Ватт и тд.
Какие еще бывают виды резисторов? Давайте рассмотрим самые распространенные:
20 ваттный стекловидный с проволочными выводами, 20 ваттный с монтажными лепестками,30 ваттный в стекловидной эмали, 5 ваттный и 20 ваттный с монтажными лепестками
1, 3, 5 ваттные керамические; 5,10,25, 50 ваттные с кондуктивным теплообменом
2, 1, 0.5, 0.25, 0.125 ваттные углеродной структуры; SMD резисторы типоразмеров 2010, 1206, 0805, 0603,0402; резисторная SMD сборка, 6,8,10 выводные резисторные сборки для сквозного монтажа, резистор в DIP корпусе
Переменные резисторы
- Переменные резисторы выглядят так:
- На схемах обозначаются так:
- Соответственно отечественный и зарубежный вариант.
- А вот и их цоколевка (расположение выводов):
Переменный резистор, который управляет напряжением называется потенциометром, а который управляет силой тока – реостатом. Здесь заложен принцип делителя напряжения и делителя тока соответственно. Различие между потенциометром и реостатом в схеме подключения самого переменного резистора. В схеме с реостатом в переменном резисторе соединяется средний и крайний выводы.
- Переменные резисторы, у которых сопротивление можно менять только при помощи отвертки или шестигранного ключика, называются подстроечными переменными резисторами. У них есть специальные пазы для регулировки сопротивления (отмечены красной рамкой):
- А вот так обозначаются подстроечные резисторы и их схемы включения в режиме реостата и потенциометра.
Термисторы
Термисторы – это резисторы на основе полупроводниковых материалов. Их сопротивление резко зависит от температуры окружающей среды. Есть такой важный параметр термисторов, как ТКС – тепловой коэффициент сопротивления. Грубо говоря, этот коэффициент показывает на сколько изменится сопротивление термистора при изменении температуры окружающей среды.
Этот коэффициент может быть как отрицательный, так и положительный. Если ТКС отрицательный, то такой термистор называют термистором, а если ТКС положительный, то такой термистор называют позистором. У термисторов при увеличении температуры окружающей среды сопротивление падает. У позисторов с увеличением температуры окружающей среды растет и сопротивление.
- Так как термисторы обладают отрицательным коэффициентом (NTC — Negative Temperature Coefficient — отрицательный ТКС), а позисторы положительным коэффициентом (РТС — Positive Temperature Coefficient — положительный ТКС), то и на схемах они будут обозначаться соответствующим образом.
Варисторы
Есть также особый класс резисторов, которые резко изменяют свое сопротивление при увеличении напряжения – это варисторы.
Это свойство варисторов широко используют от защиты перенапряжений в цепи, а также от импульсных скачков напряжения. Допустим у нас “скакануло” напряжение. Все это дело “чухнул” варистор и сразу же резко изменил сопротивление в меньшую сторону.
Так как сопротивление варистора стало очень маленьким, то весь электрический ток сразу же начнет протекать через него, тем самым защищая основную цепь радиоэлектронного устройства.
При этом варистор берет всю мощность импульса на себя и очень часто платит за это своей жизнью, то его выгорает наглухо
- На схемах варисторы обозначаются вот таким образом:
Фоторезисторы
Большой популярностью также пользуются фоторезисторы. Они изменяют свое сопротивление, если на них посветить. В этих целях можно применять как солнечный свет, так и искусственный, например, от фонарика.
- На схемах они обозначаются вот таким образом:
Тензорезисторы
Принцип действия их работы основан на растяжении тонких печатных проводников. При растяжении они становятся еще тоньше. Это все равно, что вытягивать жевательную резинку. Чем больше вы ее вытягиваете, тем тоньше она становится. А как вы знаете, чем тоньше проводник, тем бОльшим сопротивлением он обладает.
- На схемах тензорезистор выглядит вот так:
- Вот анимация работы тензорезистора, позаимствованная с Википедии.
- Ну и как вы догадались, тензорезисторы используются в электронных весах, а также в различных датчиках, где применяется какое-либо давление, либо сила.
Последовательное и параллельное соединение резисторов
Все вышеописанные резисторы можно соединять параллельно или последовательно. При параллельном соединении выводы резисторов соединятся в общих точках.
- В этом случае, чтобы узнать общее сопротивление всех резисторов в цепи, достаточно будет воспользоваться формулой, где сопротивление между точками А и В (RAB) и есть то самое R общее:
- При последовательном соединении номиналы резисторов просто тупо суммируются
- В этом случае
Резюме
Резистор – это радиокомпонент электронной промышленности, который используется абсолютно во всей радиоэлектронной аппаратуре. Он используется для создания делителей тока, делителя напряжения, в качестве шунта и, конечно же, для ограничения силы тока.
- Резистор обладает активным сопротивлением, в отличие от катушки индуктивности и конденсатора.
- По конструктивному исполнению резисторы делятся на два класса: переменные и постоянные.
- Существуют также подвиды резисторов – это фоторезисторы, термисторы, варисторы, тензорезисторы и другие специфические редко используемые подвиды резисторов.
Источник: https://www.RusElectronic.com/resistors/
Резистор простым языком: что это такое, устройство, принцип работы, виды
При передаче электрического тока на расстояние из-за сопротивления проводов теряется часть энергии. В таких случаях сопротивление является негативным фактором и его стараются свести к минимуму.
Другое дело электрические цепи в электронных устройствах. Там резистор выполняет много полезных функций. В электронных схемах используется свойства этих пассивных компонентов для ограничения тока в многочисленных цепях. С их помощью обеспечивается нужный режим работы усилительных каскадов.
Что такое резистор?
Название этого электронного элемента произошло от латинского слова resisto — сопротивляюсь. То есть – это пассивный элемент
применяемый в электрических цепях, действие которого основано на сопротивлении току. Основной характеристикой этого электронного компонента является величина его электрического сопротивления.
Пассивность данного электронного компонента означает то, что основной его функцией является поглощение электрической энергии. В отличие от активных элементов электроники, он ничего не генерирует, а только пассивно рассеивает электричество, преобразуя его в тепло. В схемах замещения сопротивление является основным параметром, в то время как ёмкость и индуктивность – паразитные величины.
Применение
Резисторы применяются во всех электрических схемах для установления нужных значений тока в цепях, с целью демпфирования колебаний в различных фильтрах, в качестве делителей напряжений и т. п.
Резисторы выполняют функции нагрузки в резистивных цепях, используются в качестве делителя напряжения (см. рисунок ниже) и тока, являются элементами фильтров, применяются для формирования импульсов, выполняют функции шунтов и многое другое. Сегодня трудно себе представить электрическую схему, в которой не задействованы несколько резистивных элементов.
Рис. 1. Пример использования резисторов в схеме делителя напряжения
Без резисторов не работает ни один электронный прибор.
Устройство и принцип работы
Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.
Устройство таких элементов можно понять из рисунка 2 ниже.
В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.
Рис. 2. Строение резистора
Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.
Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.
Для непроволочных резисторов используются следующие резистивные материалы:
- нихром;
- манганин;
- константан;
- никелин;
- оксиды металлов;
- металлодиэлектрики;
- углерод и другие
материалы.
Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.
Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.
Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.
Рис. 3. Регулировочные резисторы
Рис. 4. Подстроечные резисторы
Принцип действия.
Работа резистора основана на действии закона Ома: I = U/R , где I – сила тока, U – напряжение, R – сопротивление на участке цепи. Из формулы видно как зависят от величины сопротивления параметры тока и напряжения.
Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.
Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.
Рис. 5. Принцип работы
Виды
Мы уже упомянули два типа резисторов, отличающиеся по конструкции: постоянные, у которых сопротивление статичное (допускается мизерное отклонение параметров при нагреве элемента) и переменные. К последним можно добавить подвид переменных сопротивлений (полупроводниковых резисторов) – нелинейные.
Сопротивление нелинейных компонентов изменяется в широких пределах под воздействием различных факторов:
- изменения температуры (терморезисторы);
- яркости света (фоторезисторы);
- изменений напряжения (варисторы);
- деформации (тензорезисторы);
- напряжённости электрического поля (магниторезисторы);
- от протекающего заряда (мемристоры).
За видом резистивного материала классификация может быть следующей:
- проволочные резисторы (рис. 6);
- композиционные;
- металлоплёночные (рис. 7);
- металлооксидные (характеризуются стабильностью параметров);
- углеродные (угольный резистор);
- полупроводниковые, с применением резистивных полупроводниковых материалов (могут быть как линейными, так и переменными).
Рис. 6. Проволочные резисторы
Рис. 7. Постоянные плёночные SMD компоненты
Отличие плёночных smd компонентов от композиционных деталей состоит в способах их изготовления. Композиционные детали производятся путём прессования композитных смесей, а плёночные – путём напыления на изоляционную подложку.
В
интегральных монокристаллических микросхемах методом трафаретной печати или
способом напыления в вакууме создают встроенные интегральные резисторы.
По назначению сопротивления подразделяются на детали общего назначения и на компоненты специального назначения:
- прецизионные и
сверхпрецизионные (высокоточные детали с допуском отклонений параметров от
0,001% до 1%); - высокоомные (от
десятков МОм до нескольких Том); - высокочастотные, способные
работать с частотами до сотен МГц; - высоковольтные, с
рабочим напряжением, достигающим десятков кВ.
Можно классифицировать детали
и по другим признакам, например по типу защиты от влаги или по способу монтажа:
печатный либо навесной.
Номиналы резисторов
Элементы имеют свой допуск в отклонениях номинальных сопротивлений. В соответствии с допусками номиналы резисторов разбиты на 3 ряда, которые обозначаются: Е6, Е12, и Е24.
Компоненты ряда Е6 имеют допуск
отклонения ± 20%; ряда Е12 – ± 10%, а ряда Е24 – ± 5%.
Номиналы резисторов каждого ряда представлены в справочных таблицах, которые можно найти в интернете.
Маркировка
Раньше на корпусах сопротивлений проставляли номинал, ряд, мощность и серийный номер. В связи с миниатюризацией деталей перешли на цветовую маркировку. Параметры сопротивлений кодируют с помощью цветных колец (см. рис. 8).
Рис. 8. Цветовая маркировка
- Если
на корпусе присутствует 3 кольца, то первые два обозначают величину
сопротивления, третье – множитель, а допустимое отклонение составляет 20%. - Если
на корпусе 4 кольца, то значения первых трёх из них такие же, как в предыдущем
примере, а четвёртое кольцо указывает на величину отклонения. - Пять
колец: первые 3 указывают величину сопротивления, на четвёртой позиции –
множитель, а на пятой – допуск. - На сверхточных деталях наносятся 6 цветовых полос: три первых указывают величину сопротивления, полоса на четвёртой позиции – множитель, а пятое кольцо — допустимое отклонение.
Каждому цвету присвоена конкретная цифра (от 0 до 9). Учитывая позицию кольца и его цвет, можно с точностью определить параметры изделия. Для этого удобно пользоваться таблицей цветов (рис. 9).
Рис. 9. Таблица цветов
В некоторых случаях вместо сопротивления используют обычные перемычки. Считается что у них нулевое сопротивление. Вместо перемычек иногда устанавливают резистор с нулевым сопротивлением (по сути та же перемычка, только адаптирована под размеры резистора). На корпус такого сопротивления наносят 1 чёрную полоску.
Маркировка SMD-резисторов
Сопротивления, предназначенные для поверхностного монтажа маркируют цифрами (см. рис. 10). Кодировка сложна для запоминания. В ней учитывается количество цифр и их позиции. Цифрами кодируют типоразмеры изделий и значения основных параметров. Для расшифровки кодов данного типа маркировки существуют справочные таблицы или калькуляторы.
Рис. 10. Цифровая маркировка
Код на рисунке расшифровывается так: номинальное сопротивление 120×106 Ом (последняя цифра показывает количество нулей, то есть степень числа 10). Резистор из ряда Е96 с допуском 1%, типоразмер 0805 либо 1206 (значения, выделенные курсивом, определяются по справочнику).
Обозначение на схемах
Источник: https://www.asutpp.ru/chto-takoe-rezistor.html
Типы резисторов
Слово «резистор» произошло от латинского « resisto », что значит сопротивляюсь. Резисторы относятся к наиболее распространенным деталям радиоэлектронной аппаратуры.
Основным параметром резисторов является их номинальное сопротивление, измеряемое в Омах ( Ом ), килоомах ( кОм ) или мегаомах ( МОм ).
Номинальные значения сопротивлений указываются на корпусе резисторов, однако действительная величина сопротивления может отличаться от номинального значения.
Эти, отклонения устанавливаются стандартом в соответствии с классом точности, определяющим величину погрешности.
Постоянные резисторы
Широко используются три класса точности допускающие отклонение сопротивления от номинального значения:
- I класс – на ± 5 %
- II класс – на ± 10 %
- III класс – на ± 20 %
Существует так же так называемые прецизионные резисторы, они выпускаются с допусками:
- ± 2 %
- ± 1 %
- + 0,2 %
- ± 0,1 %
- ± 0,5 %
- ± 0,02 %
- ± 0,01 %
Помимо сопротивления резисторы характеризуются предельным рабочим напряжением, температурным коэффициентом сопротивления и номинальной мощностью рассеяния.
Предельным рабочим напряжением называют максимально допустимое напряжение, приложенное к выводам резистора, при котором он надежно работает.
Температурный коэффициент сопротивления ( ТКС ) отражает относительное изменение величины сопротивления резистора при колебании температуры окружающей среды на 1 °С .
В зависимости от материала, из которого изготовлен резистор, его сопротивление с увеличением температуры может возрастать либо уменьшаться. В первом случае ТКС оказывается положительным, а во втором – отрицательным.
Если на резисторе выделяется большая мощность, чем предусмотрено, его температура будет повышаться, и он даже может перегореть. В большинстве устройств РЭА применяются резисторы с номинальной мощностью рассеяния от 0,125 до 2 Вт.
-
Постоянный резистор без указания номинальной мощности рассеивания
-
0,05 Вт
-
0,125 Вт
-
0,25 Вт
-
0,5 Вт
-
1 Вт
-
2 Вт
-
5 Вт
-
10 Вт
Номинальное значение сопротивления и допускаемое отклонение указываются на резисторе с помощью специальных буквенных обозначений:
- Е (К) – от 1 до 99 Ом
- К – от 0,1 до 99 кОм
- М – от 0,1 до 99 МОм
- Пример обозначений номинальных сопротивлений резисторов:
- 27Е – 27 Ом
- 4Е7 – 4,7 Ом
- К680 – 680 Ом
- 1К5 – 1,5 кОм
- 43К – 43 кОм
- 2М4 – 2,4 МОм
- 3М – 3 МОм
Различают два основных вида резисторов: нерегулируемые ( постоянные ) и регулируемые ( переменные и подстроечные ). Особую группу составляют полупроводниковые резисторы.
Постоянные резисторы могут быть проволочными и непроволочными. Проволочные резисторы представляют собой цилиндрическое тело, на которое наматывается проволока из металла, обладающего большим удельным сопротивлением. Первыми элементами обозначения таких резисторов являются буквы:
- Из наиболее широко применяемых непроволочных резисторов можно назвать углеродистые, типа:
- Металлизированные резисторы, лакированные эмалью, теплостойкие:
- Композиционные резисторы, с стеклянным основанием, на которое наносится токопроводящий материал-смесь нескольких веществ:
На электрических схемах постоянные резисторы, независимо от их типа, изображаются в виде прямоугольников, выводы от концов резисторов – линиями, проведенными от середин меньших сторон.
Допустимая рассеиваемая мощность резистора указывается внутри прямоугольника.
Рядом с условным графическим обозначением наносят латинскую букву R, после которой следует порядковый номер резистора, согласно принципиальной схеме, а также номинальное его сопротивление.
Обозначение постоянного резистора
Для сопротивления от 0 до 999 Ом единицу измерения не указывают, для сопротивления от 1 кОм до 999 и от 1 МОм и выше к числовому его значению добавляют обозначения единиц измерения.
Сопротивление резистора ориентировочное
Если величина сопротивления резистора на схеме указана ориентировочно и в процессе настройки может быть изменена, к условному обозначению резистора добавляется звездочка *.
При необходимости подчеркнуть, что данный резистор должен обязательно быть проволочным, рядом с символом R делается надпись « пров ».
Регулируемые, или переменные резисторы являются радиоэлементами, сопротивления которых можно изменять от нуля до номинальной величины. Как и постоянные, регулируемые резисторы могут быть проволочными и непроволочными.
Регулируемый резистор без отводов
Регулируемый непроволочный резистор представляет собой токопроводящее покрытие, нанесенное на диэлектрическую пластинку в виде дуги, по которому перемещается пружинящий контакт (движок), скрепленный с осью. От этого контакта и от краев токопроводящего покрытия сделаны выводы.
Функциональная характеристика переменного резистора
По виду зависимости сопротивления между начальным выводом от токопроводящей части и движком от угла поворота оси различают резисторы типов:
- А – линейная зависимость
- Б – логарифмическая
- В – показательная зависимость
Регулируемый резистор с двумя дополнительными отводами
Сдвоенный переменный резистор
Двойной переменный резистор
Регулируемый резистор с выключателем
Разновидностью регулируемых резисторов являются подстроечные резисторы, которые не имеют выступающей оси, скрепленной с движком. Изменять положение движка и, следовательно, сопротивление между ним и одним из концов токопроводящего слоя в подстроечном резисторе можно только с помощью отвертки.
Подстроечные резисторы
Терморезистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого возрастает при уменьшении температуры и понижается при ее увеличении. Температурный коэффициент сопротивления ( ТКС ) таких резисторов отрицательный.
Позистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого увеличивается при увеличении температуры и уменьшается при ее уменьшении. Температурный коэффициент сопротивления ( ТКС ) таких резисторов положительный.
Терморезисторы (термисторы)
Условное графическое обозначение варисторов
Варисторами – называют полупроводниковые резисторы, в которых используется свойство уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения.
- Система обозначений варисторов включает буквы СН (сопротивление нелинейное) и цифры.
- Первая из цифр обозначает материал
- 1 – карбид кремния
- 2 – селен
- Вторая цифра – конструкцию
- 1,8 – стержневая
- 2, 10 – дисковая
- 3 – микромодульная
Третья цифра – порядковый номер разработки. Последним элементом обозначения также является число. Оно указывает на классификационное напряжение в вольтах, например – СН-1-2-1-100.
Варисторы применяют для защиты от перенапряжений контактов, приборов и элементов радиоэлектронных устройств, высоковольтных линий и линий связи, для стабилизации и регулирования электрических величин и т. д.
Фоторезисторами – называют полупроводниковые резисторы, сопротивление которых изменяется от светового или проникающего электромагнитного излучения. Более широко используются фоторезисторы с положительным фотоэффектом. Их сопротивление уменьшается при освещении или облучении электромагнитными волнами.
Условное графическое обозначение фоторезисторов
Благодаря высокой чувствительности, простоте конструкции, малым габаритам фоторезисторы применяются в фотореле различного назначения, счетчиках изделий в промышленности, системах контроля размеров и формы деталей, устройствах регулирования различных величин, телеуправлении и телеконтроле, датчиках различных величин и др.
Система обозначений фоторезисторов ранних выпусков содержит три буквы и цифру. Первые две буквы – ФС (фотосопротивление), за ними следует буква, обозначающая материал светочувствительного элемента:
- А – сернистый свинец
- К – сернистый кадмий
- Д – селенистый кадмий
Затем идет цифра, указывающая на вид конструкции, например: ФСК-1.
В новой системе обозначений первые две буквы СФ (сопротивление фоточувствительное). Следующая за ними цифра указывает на материал чувствительного элемента, а последняя цифра означает порядковый номер разработки, например: СФ2-1.
Источник: http://selectelement.ru/electronic-element/resistors.php
Что такое резистор? Принцип действия, особенности использования в цепи и как подобрать правильно элемент сопротивления (120 фото)
Резистор — это важная составляющая электрической цепи, которая регулирует характеристики тока и напряжения. Этот элемент можно заметить почти во всех электрических приборах.
Резистор выглядит как специальный стержень, внешне защищенный от проведения электричества. Сверху этого стержня нанесен небольшой слой сажи или металла.
Подробнее ознакомиться с внешним видом этого элемента вам помогут фото резисторов на просторах Сети.
К слову, чем меньше толщина поверхностного слоя, тем более сильным является сопротивление. Если сопротивление достаточно мало, тем сильнее ток, поступающий к резистору. Это правило действует и в обратном направлении: чем больше эта характеристика, тем меньше существующий ток.
Разновидности резисторов
Существует несколько основных категорий резисторов, о которых мы расскажем далее.
Постоянные резисторы имеют отличительное свойство: сопротивление в них слабо зависит от внешних условий. Незначительные изменения могут вызвать колебания температуры и резкие перепады работы электричества.
- Подстроечный вид отличается наличием специального винта, который позволяет манипулировать током в электрической цепи.
Переменный механизм способен на самостоятельное изменение параметров, которое обычно регулируется с помощью ручки. Примером для этого может послужить регулятор силы излучаемого звука.
Фоторезистор способен менять излучаемое сопротивление, руководствуясь светом. Создается данный типаж из полупроводниковых веществ.
Терморезистор меняет свои параметры согласно колебаниям температуры воздуха. Он выполняет важнейшую функцию: а именно регулирует работу отопительных или охладительных систем по достижению температуры воздуха определенных показателей. Именно поэтому терморезисторы можно часто увидеть в инкубаторах и прочих системах.
Область применения резисторов
Резистор играет важнейшую функцию в работе электрических систем. Например, он способен контролировать распределение, мощность и прочие характеристики электричества в автомобиле. Резистор любого размера, находящийся в отопительной системе позволяет точно регулировать количество подаваемого тепла.
Элемент, расположенный в светодиодах, позволяет регулировать интенсивность освещения. Следовательно, данный механизм позволяет нам более точно регулировать параметры работы техники. В противном случае нам приходилось бы пользоваться заранее установленным режимом работы техники без возможности его изменения.
Мощность рассеивания
Ток и напряжение выделяет определенную энергию, которую поглощает резистор любого размера. В связи с тем, что энергия не поглощается, а рассеивается, резистор называют пассивной составляющей. Это позволяет резистору работать не только в рамках переменного, а и постоянного тока.
Обозначение резисторов
Существует цветная маркировка резисторов, которая позволяет определить способности функционирования постоянного резистора. Приведем ее ниже:
- Наличие двух скошенных линий подразумевают рассеивание мощности 0,125 Вт.
- Одна скошенная полоска свидетельствует о мощности рассеивания 0,25 Вт.
- Одна линия, расположенная горизонтально — рассеивание 0,5 Вт.
- Одна полоска, размещенная вертикально — 1 Вт.
- Две полосы, расположенные вертикально — 2 Вт.
- Еще один способ разметки — соединение скошенных линий по типу латинской буквы V. В таком случае рассеивание составляет 5 Вт.
Последовательность соединения резисторов
Существует несколько самых распространенных способов соединения данного элемента, которые мы укажем далее.
- Последовательное соединение актуально в случаях, когда механизм обладаем малым номиналом, однако требуется большое сопротивление.
- Параллельный тип соединения подразумевает мощность сопротивления резистора, равную его общей способности сопротивления.
Заключение
Резистор является важнейших элементов для работы любого электрика. Он позволяет регулировать работу существующей техники, тем самым избавляя от массы ненужных хлопот.
- Для того, чтобы подобрать необходимый типаж резистора, необходимо обратить внимание на перечисленные рекомендации, приведенные в нашей статье.
Фото резистора
-
https://youtu.be/zsmrxsQKJqg
Вам понравилась статья? Поделитесь 😉
Источник: https://electrikexpert.ru/chto-takoe-rezistor/
Что такое резистор и для чего он нужен?
Резисторы относятся к наиболее широко используемым в электронике элементам. Это название давно вышло из узких рамок терминологии радиолюбителей. И для каждого, кто хоть немного интересуется электроникой, термин не должен вызывать непонимание.
Что такое резистор
Наиболее простое определение выглядит так: резистор — это элемент электрической цепи, оказывающий сопротивление протекающему через него току. Название элемента происходит от латинского слова “resisto” — “сопротивляюсь”, радиолюбители эту деталь часто так и называют — сопротивление.
Рассмотрим, что такое резисторы, для чего нужны резисторы. Ответы на эти вопросы подразумевают знакомство с физическим смыслом основных понятий электротехники.
Для разъяснения принципа работы резистора можно использовать аналогию с водопроводными трубами.
Если каким-либо образом затруднить протекание воды в трубе (например, уменьшив ее диаметр), произойдет повышение внутреннего давления. Убирая преграду, мы снижаем давление.
В электротехнике этому давлению соответствует напряжение — затрудняя протекание электрического тока, мы повышаем напряжение в цепи, снижая сопротивление, понижаем и напряжение.
Изменяя диаметр трубы, можно менять скорость потока воды, в электрических цепях путем изменения сопротивления можно регулировать силу тока. Величина сопротивления обратно пропорциональна проводимости элемента.
Свойства резистивных элементов можно использовать в следующих целях:
- преобразование силы тока в напряжение и наоборот;
- ограничение протекающего тока с получением его заданной величины;
- создание делителей напряжения (например, в измерительных приборах);
- решение других специальных задач (например, уменьшение радиопомех).
Пояснить, что такое резистор и для чего он нужен, можно на следующем примере.
Свечение знакомого всем светодиода происходит при малой силе тока, но его собственное сопротивление настолько мало, что если светодиод поместить в цепь напрямую, то даже при напряжении 5 В текущий через него ток превысит допустимые параметры детали. От такой нагрузки светодиод сразу выйдет из строя. Поэтому в схему включают резистор, назначение которого в данном случае — ограничение тока заданным значением.
Все резистивные элементы относятся к пассивным компонентам электрических цепей, в отличие от активных они не отдают энергию в систему, а лишь потребляют ее.
Разобравшись, что такое резисторы, необходимо рассмотреть их виды, обозначение и маркировку.
Виды резисторов
Виды резисторов можно разбить на следующие категории:
- Нерегулируемые (постоянные) — проволочные, композитные, пленочные, угольные и др.
- Регулируемые (переменные и подстроечные). Подстроечные резисторы предназначены для настройки электрических цепей. Элементы с переменным сопротивлением (потенциометры) применяются для регулировки уровней сигнала.
Отдельную группу представляют полупроводниковые резистивные элементы (терморезисторы, фоторезисторы, варисторы и пр.)
Характеристики резисторов определяются их назначением и задаются при изготовлении. Среди ключевых параметров:
- Номинальное сопротивление. Это главная характеристика элемента, измеряется в омах (Ом, кОм, МОм).
- Допустимое отклонение в процентах от указанного номинального сопротивления. Означает возможный разброс показателя, определяемый технологией изготовления.
- Рассеиваемая мощность — предельная мощность, которую резистор может рассеивать при долговременной нагрузке.
- Температурный коэффициент сопротивления — величина, показывающая относительное изменение сопротивления резистора при изменении температуры на 1°С.
- Предельное рабочее напряжение (электрическая прочность). Это максимальное напряжение, при котором деталь сохраняет заявленные параметры.
- Шумовая характеристика — степень вносимых резистором искажений в сигнал.
- Влагостойкость и термостойкость — максимальные значения влажности и температуры, превышение которых может привести к выходу детали из строя.
- Коэффициент напряжения. Величина, учитывающая зависимость сопротивления от приложенного напряжения.
Применение резисторов в области сверхвысоких частот придает важность дополнительным характеристикам: паразитной емкости и индуктивности.
Полупроводниковые резисторы
Это полупроводниковые приборы с двумя выводами, обладающие зависимостью электрического сопротивления от параметров среды — температуры, освещенности, напряжения и др. Для изготовления таких деталей используют полупроводниковые материалы, легированные примесями, тип которых определяет зависимость проводимости от внешнего воздействия.
Существуют следующие типы полупроводниковых резистивных элементов:
- Линейный резистор. Изготовленный из слаболегированного материала, этот элемент имеет малую зависимость сопротивления от внешнего воздействия в широком диапазоне напряжений и токов, чаще всего он применяется в производстве интегральных микросхем.
- Варистор — элемент, сопротивление которого зависит от напряженности электрического поля. Такое свойство варистора определяет сферу его применения: для стабилизации и регулирования электрических параметров устройств, для защиты от перенапряжения, в других целях.
- Терморезистор. Эта разновидность нелинейных резистивных элементов обладает способностью изменять свое сопротивление в зависимости от температуры. Существует два типа терморезисторов: термистор, сопротивление которого падает с ростом температуры, и позистор, чье сопротивление растет вместе с температурой. Терморезисторы применяются там, где важен постоянный контроль над температурным процессом.
- Фоторезистор. Сопротивление этого прибора меняется под воздействием светового потока и не зависит от приложенного напряжения. При изготовлении используется свинец и кадмий, в ряде стран это послужило поводом для отказа от применения этих деталей по экологическим соображениям. Сегодня фоторезисторы уступают по востребованности фотодиодам и фототранзисторам, применяемым в аналогичных узлах.
- Тензорезистор. Этот элемент устроен так, что способен менять свое сопротивление в зависимости от внешнего механического воздействия (деформации). Используется в узлах, преобразующих механическое воздействие в электрические сигналы.
Такие полупроводниковые элементы, как линейные резисторы и варисторы, характеризуются слабой степенью зависимости от внешних факторов. Для тензорезисторов, терморезисторов и фоторезисторов зависимость характеристик от воздействия является сильной.
Полупроводниковые резисторы на схеме обозначаются интуитивно понятными символами.
Резистор в цепи
На российских схемах элементы с постоянным сопротивлением принято обозначать в виде белого прямоугольника, иногда с буквой R над ним. На зарубежных схемах можно встретить обозначение резистора в виде значка “зигзаг” с аналогичной буквой R сверху. Если для работы прибора важен какой-либо параметр детали, на схеме принято его указывать.
Как измерить ёмкость конденсатора мультиметром?
Мощность может обозначаться полосками на прямоугольнике:
- 2 Вт — 2 вертикальные черты;
- 1 Вт — 1 вертикальная черта;
- 0,5 Вт — 1 продольная линия;
- 0,25 Вт — одна косая линия;
- 0,125 Вт — две косые линии.
Допустимо указание мощности на схеме римскими цифрами.
Обозначение переменных резисторов отличается наличием дополнительной над прямоугольником линии со стрелкой, символизирующей возможность регулировки, цифрами может быть указана нумерация выводов.
Полупроводниковые резисторы обозначаются тем же белым прямоугольником, но перечеркнутым косой линией (кроме фоторезисторов) с буквенным указанием типа управляющего воздействия (U — для варистора, P — для тензорезистора, t — для терморезистора). Фоторезистор обозначается прямоугольником в круге, к которому направлены две стрелки, символизирующие свет.
Параметры резистора не зависят от частоты протекающего тока, это означает, что данный элемент одинаково функционирует в цепях постоянного и переменного тока (как низкой, так и высокой частоты). Исключением являются проволочные резисторы, которым свойственна индуктивность и возможность потери энергии вследствие излучения на высоких и сверхвысоких частотах.
В зависимости от требований к свойствам электрической цепи резисторы могут соединяться параллельно и последовательно. Формулы для расчета общего сопротивления при разном соединении цепей существенно отличаются. При последовательном соединении итоговое сопротивление равно простой сумме значений входящих в цепь элементов: R = R1 + R2 +… + Rn.
При параллельном соединении для вычисления суммарного сопротивления необходимо сложить величины, обратные значениям элементов. При этом получится значение, также обратное итоговому: 1/R = 1/R1+ 1/R2 + … 1/Rn.
Общее сопротивление параллельно соединенных резисторов будет ниже наименьшего из них.
Номиналы
Существуют стандартные значения сопротивлений для резистивных элементов, называемые “номинальным рядом резисторов”.
В основу подхода при создании этого ряда положено следующее соображение: шаг между значениями должен перекрывать допустимую величину отклонения (погрешность). Пример — если номинал элемента 100 Ом, а допустимое отклонение 10%, то следующее значение в ряду будет 120 Ом.
Такой шаг позволяет избежать лишних значений, поскольку соседние номиналы вместе с разбросом погрешности практически перекрывают весь диапазон значений между ними.
Выпускаемые резисторы объединяются в серии, отличающиеся по допускам. Для каждой серии составлен свой номинальный ряд.
Отличия между сериями:
- Е 6 — допуск 20%;
- E 12 — допуск 10%;
- E 24 — допуск 5% (бывает 2%);
- Е 48 — допуск 2%;
- E 96 — допуск 1%;
- E 192 — допуск 0,5% (бывает 0,25%, 0,1% и ниже).
Самая широко распространенная серия Е 24 включает в себя 24 номинала сопротивлений.
Маркировка
Размер резистивного элемента напрямую связан с его мощностью рассеивания, чем она выше, тем крупнее габариты детали.
Если на схемах легко указать любое численное значение, то маркировка изделий бывает затруднена.
Тенденция миниатюризации в производстве электроники вызывает необходимость использования элементов все меньших размеров, что повышает сложность как нанесения информации на корпус, так и ее прочтения.
Для облегчения идентификации резисторов в российской промышленности применяют буквенно-цифровую маркировку.
Сопротивление обозначается так: цифрами указывают номинал, а букву ставят либо за цифрами (в случае десятичных значений), либо перед ними (для сотен).
Если номинал менее 999 Ом, то число наносится без буквы (или могут стоять буквы R либо Е). Если же значение указано в кОм, то за числом ставится буква К, букве М соответствует значение в МОм.
Номиналы американских резисторов обозначаются тремя цифрами. Первые две из них предполагают номинал, третья — количество нулей (десятков), добавляемых к значению.
При роботизированном производстве электронных узлов нанесенные символы нередко оказываются на той стороне детали, которая обращена к плате, это делает прочтение информации невозможным.
Цветовая маркировка
Чтобы информация о параметрах детали оставалась читаемой с любой стороны, применяют цветовую маркировку, краска при этом наносится кольцевыми полосами. Каждому цвету соответствует свое численное значение.
Полосы на деталях размещаются ближе к одному из выводов и читаются от него слева направо.
Если из-за малого размера детали невозможно сместить цветовую маркировку к одному выводу, то первая полоса делается шириной в 2 раза больше, чем остальные.
Элементы с допустимой погрешностью в 20% обозначают тремя линиями, для погрешности 5-10% используют 4 линии. Самые точные резисторы обозначаются с помощью 5-6 линий, первые 2 из них соответствуют номиналу детали.
Если полос 4, то третья говорит о десятичном множителе для первых двух полос, четвертая линия означает точность. Если полос 5, то третья из них — третий знак номинала, четвертая — степень показателя (количество нулей), а пятая — точность.
Шестая линия означает температурный коэффициент сопротивления (ТКС).
В случае четырехполосной маркировки последними всегда идут золотая или серебряная полосы.
Все обозначения выглядят сложно, но умение быстро читать маркировку приходит с опытом.
Источник: https://odinelectric.ru/knowledgebase/chto-takoe-rezistor