Периодическая система элементов — студенческий портал

Еще в школе, сидя на уроках химии, все мы помним таблицу на стене класса или химической лаборатории.

Эта таблица содержала классификацию всех известных человечеству химических элементов, тех фундаментальных компонентов, из которых состоит Земля и вся Вселенная.

Тогда мы и подумать не могли, что таблица Менделеева бесспорно является одним из величайших научных открытий, который является фундаментом нашего современного знания о химии.

Периодическая система элементов - Студенческий порталПериодическая система химических элементов Д. И. Менделеева

На первый взгляд, ее идея выглядит обманчиво просто: организовать химические элементы в порядке возрастания веса их атомов. Причем в большинстве случаев оказывается, что химические и физические свойства каждого элемента сходны с предыдущим ему в таблице элементом.

Эта закономерность проявляется для всех элементов, кроме нескольких самых первых, просто потому что они не имеют перед собой элементов, сходных с ними по атомному весу.

Именно благодаря открытию такого свойства мы можем поместить линейную последовательность элементов в таблицу, очень напоминающую настенный календарь, и таким образом объединить огромное количество видов химических элементов в четкой и связной форме.

Разумеется, сегодня мы пользуемся понятием атомного числа (количества протонов) для того, чтобы упорядочить систему элементов. Это помогло решить так называемую техническую проблему «пары перестановок», однако не привело к кардинальному изменению вида периодической таблицы.

В периодической таблице Менделеева все элементы упорядочены с учетом их атомного числа, электронной конфигурации и повторяющихся химических свойств. Ряды в таблице называются периодами, а столбцы группами. В первой таблице, датируемой 1869 годом, содержалось всего 60 элементов, теперь же таблицу пришлось увеличить, чтобы поместить 118 элементов, известных нам сегодня.

Периодическая система Менделеева систематизирует не только элементы, но и самые разнообразные их свойства. Химику часто бывает достаточно иметь перед глазами Периодическую таблицу для того, чтобы правильно ответить на множество вопросов (не только экзаменационных, но и научных).

The YouTube ID of 1M7iKKVnPJE is invalid.

Периодический закон

Существуют две формулировки периодического закона химических элементов: классическая и современная.

Классическая, в изложении его первооткрывателя Д.И. Менделеева: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.

Современная: свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).

Графическим изображением периодического закона является периодическая система элементов, которая представляет собой естественную классификацию химических элементов, основанную на закономерных изменениях свойств элементов от зарядов их атомов. Наиболее распространёнными изображениями периодической системы элементов Д.И. Менделеева являются короткая и длинная формы.

Периодическая система элементов - Студенческий портал

Группы и периоды Периодической системы

Группами называют вертикальные ряды в периодической системе. В группах элементы объединены по признаку высшей степени окисления в оксидах. Каждая группа состоит из главной и побочной подгрупп.

Главные подгруппы включают в себя элементы малых периодов и одинаковые с ним по свойствам элементы больших периодов. Побочные подгруппы состоят только из элементов больших периодов.

Химические свойства элементов главных и побочных подгрупп значительно различаются.

Периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.

В периодической системе имеются семь периодов: первый, второй и третий периоды называют малыми, в них содержится соответственно 2, 8 и 8 элементов; остальные периоды называют большими: в четвёртом и пятом периодах расположены по 18 элементов, в шестом — 32, а в седьмом (пока незавершенном) — 31 элемент. Каждый период, кроме первого, начинается щелочным металлом, а заканчивается благородным газом.

Физический смысл порядкового номера химического элемента: число протонов в атомном ядре и число электронов, вращающихся вокруг атомного ядра, равны порядковому номеру элемента.

Периодическая система элементов - Студенческий портал

Свойства таблицы Менделеева

Напомним, что группами называют вертикальные ряды в периодической системе и химические свойства элементов главных и побочных подгрупп значительно различаются.

Свойства элементов в подгруппах закономерно изменяются сверху вниз:

  • усиливаются металлические свойства и ослабевают неметаллические;
  • возрастает атомный радиус;
  • возрастает сила образованных элементом оснований и бескислородных кислот;
  • электроотрицательность падает.

Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения, существует всего восемь форм кислородных соединений.

В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где символом R обозначают элемент данной группы.

Формулы высших оксидов относятся ко всем элементам группы, кроме исключительных случаев, когда элементы не проявляют степени окисления, равной номеру группы (например, фтор).

Оксиды состава R2O проявляют сильные основные свойства, причём их основность возрастает с увеличением порядкового номера, оксиды состава RO (за исключением BeO) проявляют основные свойства. Оксиды состава RO2, R2O5, RO3, R2O7 проявляют кислотные свойства, причём их кислотность возрастает с увеличением порядкового номера.

Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения. Существуют четыре формы таких соединений. Их располагают под элементами главных подгрупп и изображают общими формулами в последовательности RH4, RH3, RH2, RH.

  • Соединения RH4 имеют нейтральный характер; RH3 — слабоосновный; RH2 — слабокислый; RH — сильнокислый характер.
  • Напомним, что периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.
  • В пределах периода с увеличением порядкового номера элемента:
  • электроотрицательность возрастает;
  • металлические свойства убывают, неметаллические возрастают;
  • атомный радиус падает.

Периодическая система элементов - Студенческий портал

К ним относятся элементы из первой и второй группы периодической таблицы. Щелочные металлы из первой группы — мягкие металлы, серебристого цвета, хорошо режутся ножом. Все они обладают одним-единственным электроном на внешней оболочке и прекрасно вступают в реакцию.

 Щелочноземельные металлы из второй группы также имеют серебристый оттенок. На внешнем уровне помещено по два электрона, и, соответственно, эти металлы менее охотно взаимодействуют с другими элементами.

По сравнению со щелочными металлами, щелочноземельные металлы плавятся и кипят при более высоких температурах.

Показать / Скрыть текст

Щелочные металлы Щелочноземельные металлы
Литий Li 3 Бериллий Be 4
Натрий Na 11 Магний Mg 12
Калий K 19 Кальций Ca 20
Рубидий Rb 37 Стронций Sr 38
Цезий Cs 55 Барий Ba 56
Франций Fr 87 Радий Ra 88

Лантаниды (редкоземельные элементы) и актиниды

Лантаниды — это группа элементов, изначально обнаруженных в редко встречающихся минералах; отсюда их название «редкоземельные» элементы.

Впоследствии выяснилось, что данные элементы не столь редки, как думали вначале, и поэтому редкоземельным элементам было присвоено название лантаниды. Лантаниды и актиниды занимают два блока, которые расположены под основной таблицей элементов.

Обе группы включают в себя металлы; все лантаниды (за исключением прометия) нерадиоактивны; актиниды, напротив, радиоактивны.

Показать / Скрыть текст

Лантаниды Актиниды
Лантан La 57 Актиний Ac 89
Церий Ce 58 Торий Th 90
Празеодимий Pr 59 Протактиний Pa 91
Неодимий Nd 60 Уран U 92
Прометий Pm 61 Нептуний Np 93
Самарий Sm 62 Плутоний Pu 94
Европий Eu 63 Америций Am 95
Гадолиний Gd 64 Кюрий Cm 96
Тербий Tb 65 Берклий Bk 97
Диспрозий Dy 66 Калифорний Cf 98
Гольмий Ho 67 Эйнштейний Es 99
Эрбий Er 68 Фермий Fm 100
Тулий Tm 69 Менделевий Md 101
Иттербий Yb 70 Нобелий No 102

Галогены и благородные газы

Галогены и благородные газы объединены в группы 17 и 18 периодической таблицы. Галогены представляют собой неметаллические элементы, все они имеют семь электронов во внешней оболочке.

В благородных газахвсе электроны находятся во внешней оболочке, таким образом с трудом участвуют в образовании соединений. Эти газы называют «благородными, потому что они редко вступают в реакцию с прочими элементами; т. е.

ссылаются на представителей благородной касты, которые традиционно сторонились других людей в обществе.

Показать / Скрыть текст

Галогены Благородные газы
Фтор F 9 Гелий He 2
Хлор Cl 17 Неон Ne 10
Бром Br 35 Аргон Ar 18
Йод I 53 Криптон Kr 36
Астат At 85 Ксенон Xe 54
 — Радон Rn 86

Переходные металлы

Переходные металлы занимают группы 3—12 в периодической таблице. Большинство из них плотные, твердые, с хорошей электро- и теплопроводностью. Их валентные электроны (при помощи которых они соединяются с другими элементами) находятся в нескольких электронных оболочках.

Показать / Скрыть текст

Переходные металлы
Скандий Sc 21
Титан Ti 22
Ванадий V 23
Хром Cr 24
Марганец Mn 25
Железо Fe 26
Кобальт Co 27
Никель Ni 28
Медь Cu 29
Цинк Zn 30
Иттрий Y 39
Цирконий Zr 40
Ниобий Nb 41
Молибден Mo 42
Технеций Tc 43
Рутений Ru 44
Родий Rh 45
Палладий Pd 46
Серебро Ag 47
Кадмий Cd 48
Лютеций Lu 71
Гафний Hf 72
Тантал Ta 73
Вольфрам W 74
Рений Re 75
Осмий Os 76
Иридий Ir 77
Платина Pt 78
Золото Au 79
Ртуть Hg 80
Лоуренсий Lr 103
Резерфордий Rf 104
Дубний Db 105
Сиборгий Sg 106
Борий Bh 107
Хассий Hs 108
Мейтнерий Mt 109
Дармштадтий Ds 110
Рентгений Rg 111
Коперниций Cn 112

Металлоиды

Металлоиды занимают группы 13—16 периодической таблицы. Такие металлоиды, как бор, германий и кремний, являются полупроводниками и используются для изготовления компьютерных чипов и плат.

Показать / Скрыть текст

Металлоиды
Бор B 5
Кремний Si 14
Германий Ge 32
Мышьяк As 33
Сурьма Sb 51
Теллур Te 52
Полоний Po 84

Постпереходными металлами

Элементы, называемые постпереходными металлами, относятся к группам 13—15 периодической таблицы. В отличие от металлов, они не имеют блеска, а имеют матовую окраску.

В сравнении с переходными металлами постпереходные металлы более мягкие, имеют более низкую температуру плавления и кипения, более высокую электроотрицательность. Их валентные электроны, с помощью которых они присоединяют другие элементы, располагаются только на внешней электронной оболочке.

Читайте также:  Задачи философии в культуре - студенческий портал

Элементы группы постпереходных металлов имеют гораздо более высокую температуру кипения, чем металлоиды.

Показать / Скрыть текст

Постпереходные металлы
Алюминий Al 13
Галлий Ga 31
Индий In 49
Олово Sn 50
Таллий Tl 81
Свинец Pb 82
Висмут Bi 83

Неметаллы

Из всех элементов, классифицируемых как неметаллы, водород относится к 1-й группе периодической таблицы, а остальные — к группам 13—18. Неметаллы не являются хорошими проводниками тепла и электричества. Обычно при комнатной температуре они пребывают в газообразном (водород или кислород) или твердом состоянии (углерод).

Показать / Скрыть текст

Неметаллы
Водород H 1
Углерод C 6
Азот N 7
Кислород O 8
Фосфор P 15
Сера S 16
Селен Se 34
Флеровий Fl 114
Унунсептий Uus 117

А теперь закрепите полученные знания, посмотрев видео про таблицу Менделеева и не только.

Отлично, первый шаг на пути к знаниям сделан. Теперь вы более-менее ориентируетесь в таблице Менделеева и это вам очень даже пригодится, ведь Периодическая система Менделеева является фундаментом, на котором стоит эта удивительная наука.

Источник: https://himi4ka.ru/tablica-mendeleeva

Периодический закон Д. И. Менделеева и периодическая система химических элементов

Периодический закон Д.И. Менделеева и периодическая система химических элементов имеет большое значение в развитии химии. Окунемся в 1871 год, когда профессор химии Д.И.

Менделеев,  методом многочисленных проб и ошибок, пришел  к выводу, что «… свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».

Периодичность изменения свойств элементов возникает вследствие периодического повторения электронной конфигурации внешнего электронного слоя  с увеличением заряда ядра.Периодическая система элементов - Студенческий портал

Современная формулировка периодического закона такова:

«свойства химических элементов (т.е. свойства и форма образуемых ими соединений) находятся в периодической зависимости от заряда ядра атомов химических элементов».

Преподавая химию, Менделеев понимал, что запоминание индивидуальных свойств каждого элемента, вызывает у студентов трудности. Он стал искать пути создания системного метода, чтобы облегчить запоминание свойств элементов. В результате появилась естественная таблица, позже она стала называться периодической.

Наша современная таблица очень похожа на менделеевскую. Рассмотрим ее подробнее.

Таблица Менделеева

Периодическая таблица Менделеева состоит из 8 групп и 7 периодов.

Вертикальные столбцы таблицы называют группами. Элементы, внутри каждой группы, обладают сходными химическими и физическими свойствами. Это объясняется тем, что элементы одной группы имеют сходные электронные конфигурации внешнего слоя, число электронов на котором равно номеру группы. При этом группа разделяется на главные и побочные подгруппы.

В Главные подгруппы входят элементы, у которых валентные электроны располагаются на внешних ns- и np- подуровнях. В Побочные подгруппы входят элементы, у которых  валентные электроны располагаются на внешнем ns- подуровне и внутреннем (n — 1) d- подуровне (или (n — 2) f- подуровне).

Все элементы в периодической таблице, в зависимости от того, на каком подуровне (s-, p-, d- или f-) находятся валентные электроны классифицируются на: s- элементы (элементы главной подгруппы I и II групп), p- элементы (элементы главных подгрупп III — VII групп), d- элементы (элементы побочных подгрупп), f- элементы (лантаноиды, актиноиды).

Высшая валентность элемента (за исключением O, F, элементов подгруппы меди и восьмой группы) равна номеру группы, в которой он находится.

Для элементов главных и побочных подгрупп одинаковыми являются формулы высших оксидов (и их гидратов). В главных подгруппах состав водородных соединений являются одинаковыми, для элементов, находящихся в этой группе.

Твердые гидриды образуют элементы главных подгрупп I — III групп, а IV — VII групп образуют а газообразные водородные соединения. Водородные соединения типа ЭН4 – нейтральнее соединения, ЭН3 – основания, Н2Э и НЭ — кислоты.

Горизонтальные ряды таблицы называют периодами. Элементы в периодах отличаются между собой, но общее у них то, что последние электроны находятся на одном энергетическом уровне (главное квантовое число n — одинаково).

Первый период отличается от других тем, что там находятся всего 2 элемента: водород H и гелий He.

Во втором периоде находятся 8 элементов (Li — Ne). Литий Li – щелочной металл начинает период, а замыкает его благородный газ неон Ne.

В третьем периоде, также как и во втором находятся 8 элементов (Na — Ar). Начинает период щелочной металл натрий Na, а замыкает его благородный газ аргон Ar.

В четвёртом периоде находятся 18 элементов (K — Kr) – Менделеев его обозначил как  первый большой период. Начинается он также с щелочного металла Калий, а заканчивается инертным газом криптон Kr. В состав больших периодов входят переходные элементы (Sc — Zn) — d-элементы.

В пятом  периоде, аналогично четвертому находятся 18 элементов (Rb — Xe) и структура его сходна с четвёртым. Начинается он также с щелочного металла рубидий Rb, а заканчивается инертным газом ксенон Xe. В состав больших периодов входят переходные элементы (Y — Cd) — d-элементы.

Шестой период состоит из 32 элементов (Cs — Rn). Кроме 10 d-элементов (La, Hf — Hg) в нем находится ряд из 14 f-элементов(лантаноиды)- Ce — Lu

Седьмой период не закончен. Он начинается с Франций Fr, можно предположить, что он будет содержать, также как и шестой период, 32 элемента, которые уже найдены (до элемента с Z = 118).

Интерактивная таблица Менделеева

Если посмотреть на периодическую таблицу Менделеева и провести воображаемую черту, начинающуюся у бора и заканчивающуюся между полонием и астатом, то все металлы будут находиться слева от черты, а неметаллы – справа. Элементы, непосредственно прилегающие к этой линии будут обладать свойствами как металлов, так и неметаллов. Их называют металлоидами или полуметаллами. Это бор, кремний, германий, мышьяк, сурьма, теллур и полоний.

Периодический закон

Менделеев дал следующую формулировку Периодического закона: «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Существует четыре основных периодических закономерности:

Правило октета утверждает, что все элементы стремятся приобрести или потерять электрон, чтобы иметь восьмиэлектронную конфигурацию ближайшего благородного газа. Т.к. внешние s- и p-орбитали благородных газов полностью заполнены, то они являются самыми стабильными элементами.

Энергия ионизации – это количество энергии, необходимое для отрыва электрона от атома. Согласно правилу октета, при движении по периодической таблице слева направо для отрыва электрона требуется больше энергии. Поэтому элементы с левой стороны таблицы стремятся потерять электрон, а с правой стороны – его приобрести.

Самая высокая энергия ионизации у инертных газов. Энергия ионизации уменьшается при движении вниз по группе, т.к. у электронов низких энергетических уровней есть способность отталкивать электроны с более высоких энергетических уровней. Это явление названо эффектом экранирования. Благодаря этому эффекту внешние электроны мене прочно связаны с ядром.

Двигаясь по периоду энергия ионизации плавно увеличивается слева направо.

Периодическая система элементов - Студенческий порталЗависимость энергии ионизации от заряда ядра

Сродство к электрону – изменение энергии при приобретении дополнительного электрона атомом вещества в газообразном состоянии. При движении по группе вниз сродство к электрону становится менее отрицательным вследствие эффекта экранирования.

Периодическая система элементов - Студенческий порталЗависимость сродства к электрону от заряда ядра

Электроотрицательность  — мера того, насколько сильно атом стремится притягивать к себе электроны связанного с ним другого атома.

Электроотрицательность увеличивается при движении в периодической таблице слева направо и снизу вверх. При этом надо помнить, что благородные газы не имеют электроотрицательности.

Таким образом, самый электроотрицательный элемент – фтор.

Периодическая система элементов - Студенческий порталзависимость электроотрицательности от заряда ядра

  • На основании этих понятий, рассмотрим как меняются свойства атомов и их соединений в таблице Менделеева.
  • Итак, в периодической зависимости находятся такие свойства атома, которые  связанны с его электронной конфигурацией: атомный радиус, энергия ионизации,  электроотрицательность.
  • Рассмотрим изменение свойств атомов и их соединений в зависимости от положения в периодической системе химических элементов.

Неметалличность атома увеличивается при движении в периодической таблице слева направо и снизу вверх. В связи с этим основные свойства оксидов уменьшаются, а кислотные свойства увеличиваются в том же порядке — при движении слева направо и снизу вверх. При этом кислотные свойства оксидов тем сильнее, чем больше степень окисления образующего его элемента

По периоду слева направо основные свойства гидроксидов ослабевают,по главным подгруппам сверху вниз сила оснований увеличивается. При этом, если металл может образовать несколько гидроксидов, то с увеличением степени окисления металла, основные свойства гидроксидов ослабевают.

По периоду слева направо увеличивается сила кислородосодержащих кислот. При движении сверху вниз в пределах одной группы сила кислородосодержащих кислот уменьшается. При этом сила кислоты увеличивается с увеличением степени окисления образующего кислоту элемента.

По периоду слева направо увеличивается сила бескислородных кислот. При движении сверху вниз в пределах одной группы сила бескислородных кислот увеличивается.

Источник: http://zadachi-po-khimii.ru/obshaya-himiya/periodicheskij-zakon-d-i-mendeleeva-i-periodicheskaya-sistema-ximicheskix-elementov.html

Как создавалась периодическая таблица элементов Менделеева

У каждой области науки есть свой любимый юбилей. У физиков это «Принципы» Ньютона, книга 1687 года, которая ввела законы движения и гравитации. Биологи празднуют дарвиновское «Происхождение видов» (1859 год) и его день рождения (1809).

Астрономы отмечают 1543 год, ведь именно тогда Коперник поместил Солнце в центр Солнечной системы.

Что касается химии, ни одна причина для празднования не превзойдет появление периодической таблицы элементов, созданной 150 лет назад в марте русским химиком Дмитрием Ивановичем Менделеевым.

Периодическая система элементов - Студенческий портал

Дмитрий Иванович Менделеев.

Таблица Менделеева стала такой же привычной для студентов-химиков, как калькуляторы для бухгалтеров. Она содержит всю науку в чуть более сотне квадратов, содержащих символы и цифры.

Она перечисляет элементы, которые составляют все земные вещества, сгруппированные таким образом, чтобы можно было выявить закономерности в их свойствах, определить цель химического исследования как в теории, так и на практике.

Читайте также:  Факторы микросреды маркетинга - студенческий портал

Периодическая таблица — это, бесспорно, самая важная концепция в химии.

Таблица Менделеева выглядела как специальная таблица, однако сам он хотел, чтобы она отражала глубокую научную истину, которую он открыл: периодический закон.

Его закон выявил глубокие семейные отношения между известными химическими элементами – они проявляют подобные свойства через регулярные промежутки (или периоды), если расположить их в порядке атомного веса – и позволил Менделееву предсказать существование элементов, которые еще не были обнаружены.

«До обнародования этого закона химические элементы были просто фрагментарными, случайными фактами в Природе», заявил Менделеев. «Закон периодичности впервые позволил нам увидеть неоткрытые элементы на расстоянии, которое раньше было недоступно для химического зрения».

Опыт системы элементов Д. Менделеева.

Таблица Менделеева не только предсказала существование новых элементов. Она подтвердила тогда еще спорную веру в реальность атомов.

Она намекнула на существование субатомной структуры и предвидела математический аппарат, лежащий в основе правил, управляющих материей, которые в конечном счете проявили себя в квантовой теории.

Его таблица завершила превращение химической науки из средневекового магического мистицизма алхимии в область современной научной строгости. Периодическая таблица символизирует не столько составляющие вещества, сколько логическую стройность и принципиальную рациональность науки в целом.

Как создавалась периодическая таблица

Легенда гласит, что Менделеев задумал и создал свою таблицу в один день: 17 февраля 1869 года по русскому календарю (для большей части мира это 1 марта). Но это, вероятнее всего, преувеличение. Менделеев думал о группировании элементов годами, и другие химики несколько раз рассматривали понятие связей между элементами в предыдущие десятилетия.

Интересные элементы можно найти и в космосе. Астронафты это доказали.

На самом деле, немецкий физик Иоганн Вольфганг Доберейнер заметил особенности группирования элементов еще в 1817 году. В те дни химики еще не полностью поняли природу атомов, описанную атомной теорией Джона Дальтона в 1808 году. В своей «новой системе химической философии» Дальтон объяснил химические реакции, предполагая, что каждое элементарное вещество состоит из атома определенного типа.

Дальтон предположил, что химические реакции производили новые вещества, когда атомы разъединяются или соединяются. Он полагал, что любой элемент состоит исключительно из одного вида атома, который отличается от других по весу.

Атомы кислорода весили в восемь раз больше, чем атомы водорода. Дальтон считал, что атомы углерода в шесть раз тяжелее водорода.

Когда элементы объединяются для создания новых веществ, количество реагирующих веществ может быть рассчитано с учетом этих атомных весов.

Дальтон ошибался насчет некоторых масс – кислород в действительности в 16 раз тяжелее водорода, а углерод в 12 раз тяжелее водорода. Но его теория сделала идею об атомах полезной, вдохновив революцию в химии. Точное измерение атомной массы стало основной проблемой химиков на последующие десятилетия.

Размышляя об этих весах, Доберейнер отметил, что определенные наборы из трех элементов (он назвал их триадами) показывают интересную связь. Бром, например, имел атомную массу где-то между массами хлора и йода, и все эти три элемента демонстрировали сходное химическое поведение. Литий, натрий и калий также были триадой.

Другие химики заметили связи между атомными массами и химическими свойствами, но лишь в 1860-х годах атомные массы стали достаточно хорошо поняты и измерены, чтобы выработалось более глубокое понимание.

Английский химик Джон Ньюландс заметил, что расположение известных элементов в порядке увеличения атомной массы приводило к повторению химических свойств каждого восьмого элемента. Эту модель он назвал «законом октав» в статье 1865 года.

Но модель Ньюландса не очень хорошо держалась после первых двух октав, что заставило критиков предложить ему расставить элементы в алфавитном порядке. И как вскоре понял Менделеев, отношение свойств элементов и атомных масс были чуть более сложными.

Менделеев родился в Тобольске, в Сибири, в 1834 году и был семнадцатым ребенком у своих родителей. Он жил яркой жизнью, преследуя разные интересы и путешествуя по дороге к выдающимся людям.

Во время получения высшего образования в педагогическом институте в Санкт-Петербурге он чуть не умер от тяжелой болезни.

После окончания он преподавал в средних школах (это нужно было, чтобы получать жалование в институте), попутно изучая математику и естественные науки для получения степени магистра.

Затем он работал преподавателем и лектором (и писал научные работы), пока не получил стипендию для расширенного тура исследований в лучших химических лабораториях Европы.

Вернувшись в Санкт-Петербург, он оказался без работы, поэтому написал превосходное руководство по органической химии в надежде выиграть крупный денежный приз.

В 1862 году это принесло ему премию Демидова. Также он работал редактором, переводчиком и консультантом в различных химических сферах.

В 1865 году он вернулся к исследованиям, получил доктора наук и стал профессором Петербургского университета.

Вскоре после этого Менделеев начал преподавать неорганическую химию. Готовясь освоить это новое (для него) поле, он остался неудовлетворен доступными учебниками. Поэтому решил написать собственный. Организация текста требовала организации элементов, поэтому вопрос их наилучшего расположения непрестанно был у него на уме.

К началу 1869 года Менделеев добился достаточного прогресса, чтобы понять, что некоторые группы подобных элементов демонстрировали регулярное увеличение атомных масс; другие элементы с примерно одинаковыми атомными массами имели схожие свойства. Оказалось, что упорядочение элементов по их атомному весу было ключом к их классификации.

Периодическая таблица Д. Менелеева.

По собственным словам Менделеева, он структурировал свое мышление, записав каждый из 63 известных тогда элементов на отдельной карточке. Затем, посредством своего рода игры в химический пасьянс, он нашел закономерность, которую искал.

Располагая карточки в вертикальных столбцах с атомными массами от низкой к более высокой, он разместил элементы со схожими свойствами в каждом горизонтальном ряд. Периодическая таблица Менделеева родилась.

Он набросал черновую версию 1 марта, отправил ее в печать и включил в свой учебник, который скоро должен был быть опубликован. Также он быстро подготовил работу для представления Российскому химическому обществу.

«Элементы, упорядоченные по размерам их атомных масс, показывают четкие периодические свойства», писал Менделеев в своей работе. «Все сравнения, которые я провел, привели меня к выводу, что размер атомной массы определяет природу элементов».

Тем временем, немецкий химик Лотар Мейер также работал над организацией элементов. Он подготовил таблицу, похожую на менделеевскую, возможно, даже раньше, чем Менделеев. Но Менделеев издал свою первым.

Тем не менее, гораздо более важным, чем победа над Мейером, было то, как Менделеев использовал свою таблицу, чтобы сделать смелые прогнозы о неоткрытых элементах.

В подготовке свой таблицы Менделеев заметил, что некоторых карточек недоставало. Он должен был оставить пустые места, чтобы известные элементы могли выровняться правильно.

Еще при его жизни три пустых места были заполнены ранее неизвестными элементами: галлий, скандий и германий.

Менделеев не только предсказал существование этих элементов, но также правильно описал их свойства в подробностях. Галлий, например, открытый в 1875 году, имел атомную массу 69,9 и плотность в шесть раз превышающую воды.

Менделеев предсказал этот элемент (он назвал его экаалюминий), только по этой плотности и атомной массе 68. Его прогнозы для экакремния близко соответствовали германию (открытому в 1886 году) по атомной массе (72 предсказано, 72,3 фактически) и плотности.

Он также верно предсказал плотность германиевых соединений с кислородом и хлором.

Таблица Менделеева стала пророческой. Казалось, что в конце этой игры этот пасьян из элементов раскроет тайны Вселенной. При этом сам Менделеев был мастером в использовании своей же таблицы.

Успешные предсказания Менделеева принесли ему легендарный статус мастера химического волшебства. Но сегодня историки спорят о том, закрепило ли открытие предсказанных элементов принятие его периодического закона.

Принятие закона могло быть в большей степени связано с его способностью объяснять установленные химические связи.

В любом случае, прогностическая точность Менделеева, безусловно, привлекла внимание к достоинствам его таблицы.

К 1890-м годам химики широко признали его закон как веху в химическом познании. В 1900-м году будущий нобелевский лауреат по химии Уильям Рамсей назвал это «величайшим обобщением, которое когда-либо проводилось в химии». И Менделеев сделал это, сам не понимая как.

Математическая карта

Во многих случаях в истории науки великие предсказания, основанные на новых уравнениях, оказывались верными. Каким-то образом математика раскрывает некоторые природные секреты, прежде чем экспериментаторы их обнаружат. Один из примеров — антиматерия, другой — расширение Вселенной.

В случае Менделеева, предсказания новых элементов возникли без какой-либо творческой математики. Но на самом деле Менделеев открыл глубокую математическую карту природы, поскольку его таблица отражала значение квантовой механики, математических правил, управляющих атомной архитектурой.

В своей книге Менделеев отметил, что «внутренние различия материи, которую составляют атомы», могут быть ответственны за периодически повторяющиеся свойства элементов. Но он не придерживался этой линии мышления. По сути, многие годы он размышлял о том, насколько важна атомная теория для его таблицы.

Но другие смогли прочитать внутреннее послание таблицы. В 1888 году немецкий химик Йоханнес Вислицен объявил, что периодичность свойств элементов, упорядоченных по массе, указывает на то, что атомы состоят из регулярных групп более мелких частиц.

Таким образом, в некотором смысле таблица Менделеева действительно предвидела (и предоставила доказательства) сложную внутреннюю структуру атомов, в то время как никто не имел ни малейшего представления о том, как на самом деле выглядел атом или имел ли он какую-нибудь внутреннюю структуру вовсе.

К моменту смерти Менделеева в 1907 году ученые знали, что атомы делятся на части: электроны, переносящие отрицательный электрический заряд, плюс некоторый положительно заряженный компонент, делающий атомы электрически нейтральными.

Читайте также:  Выбор техники, формы и организации управленческого учета - студенческий портал

Ключом к тому, как эти части выстраиваются, стало открытие 1911 года, когда физик Эрнест Резерфорд, работающий в Манчестерском университете в Англии, обнаружил атомное ядро.

Вскоре после этого Генри Мозли, работавший с Резерфордом, продемонстрировал, что количество положительного заряда в ядре (число протонов, которое он содержит, или его «атомное число») определяет правильный порядок элементов в периодической таблице.

Периодическая система элементов - Студенческий портал

Генри Мозли.

Атомная масса была тесно связана с атомным числом Мозли — достаточно тесно, чтобы упорядочение элементов по массе только в нескольких местах отличалось от упорядочения по числу. Менделеев настаивал на том, что эти массы были неправильными и нуждались в повторном измерении, и в некоторых случаях оказался прав. Осталось несколько расхождений, но атомное число Мозли прекрасно легло в таблицу.

Примерно в то же время датский физик Нильс Бор понял, что квантовая теория определяет расположение электронов, окружающих ядро, и что самые дальние электроны определяют химические свойства элемента.

Подобные расположения внешних электронов будут периодически повторяться, объясняя закономерности, которые первоначально выявила таблица Менделеева. Бор создал свою собственную версию таблицы в 1922 году, основываясь на экспериментальных измерениях энергий электронов (наряду с некоторыми подсказками из периодического закона).

Таблица Бора добавила элементы, открытые с 1869 года, но это был тот же периодической порядок, открытый Менделеевым. Не имея ни малейшего представления о квантовой теории, Менделеев создал таблицу, отражающую атомную архитектуру, которую диктовала квантовая физика.

Новая таблица Бора не стала ни первым, ни последним вариантом изначального дизайна Менделеева. Сотни версий периодической таблицы с тех пор были разработаны и опубликованы.

Современная форма — в горизонтальном дизайне в отличие от первоначальной вертикальной версии Менделеева — стала широко популярной только после Второй мировой войны, во многом благодаря работе американского химика Гленна Сиборга.

Сиборг и его коллеги создали несколько новых элементов синтетически, с атомными числами после урана, последнего природного элемента в таблице.

Сиборг увидел, что эти элементы, трансурановые (плюс три элемента, предшествовавшие урану), требовали новой строки в таблице, которую не предвидел Менделеев.

Таблица Сиборга добавила строку для тех элементов под аналогичным рядом редкоземельных элементов, которым тоже не было места в таблице.

Вклад Сиборг в химию принес ему честь назвать собственный элемент — сиборгий с номером 106. Это один из нескольких элементов, названных в честь известных ученых. И в этом списке, конечно, есть элемент 101, открытый Сиборгом и его коллегами в 1955 году и названный менделевием — в честь химика, который прежде всех остальных заслужил место в периодической таблице.

Заходите на наш канал с новостями, если хотите больше подобных историй.

Источник: https://Hi-News.ru/science/kak-sozdavalas-periodicheskaya-tablica-elementov-mendeleeva.html

4 новых элемента внесли в периодическую таблицу Менделеева

Просмотров: 26534

Периодическая система элементов - Студенческий портал Периодическая таблица Менделеева

8 ноября стало известно об официальном внесении четырех новых химических элементов в периодическую таблицу Менделеева. Об этом сообщает Международный союз теоретической и прикладной химии (IUPAC).

В периодической таблице Менделеева новые элементы обозначены номерами 113, 115, 117 и 118. По правилам IUPAC, правом давать названия новым химическим элементам обладают их первооткрыватели. Так, элемент с порядковым номером 113 получил от открывших его японских ученых название «нихоний» (символ Nh), что переводится на русский язык как «Страна восходящего солнца».

115-й элемент получил название «московий» (Mc) в честь Московского региона, где располагается Объединенный институт ядерных исследований (ОИЯИ) г. Дубна. Здесь, в Лаборатории ядерных реакций им. Г.Н. Флерова, в процессе экспериментов и был обнаружен этот элемент.

  • Новый элемент с атомным числом 117 внесли в таблицу под названием «теннессин» (Ts), которое было предложено специалистами из Национальной лаборатории Ок-Ридж Университета Вандербильта и Университета Теннесси в Ноксвилле (штат Теннесси, США), внесшими большой вклад в исследование сверхтяжелых химических элементов.
  • Наконец, 118-й элемент, которому было присвоено временное название «унуктоний», сменил его на постоянное и официальное «оганессий» (Og) в честь академика Российской академии наук Юрия Цолаковича Оганесяна за его инновационные исследования трансактиноидовых элементов.
  • Таким образом, седьмой ряд периодической таблицы Менделеева теперь полностью завершен.

Отметим, что на XX Менделеевском съезде ведущих химиков, проходившем в Екатеринбурге с 26 по 30 сентября 2016 года, директор Лаборатории ядерных реакций имени Г. Н. Флерова в ОИЯИ Сергей Николаевич Дмитриев заявил о том, что в ближайшее время ученые приступят к синтезу 119 и 120 элементов, которые станут первыми в восьмом периоде таблицы.

Периодическая система химических элементов (таблица Менделеева) представляет собой классификацию химических элементов, устанавливающую зависимость различных свойств элементов от заряда атомного ядра. Первоначальный вариант таблицы был разработан Д. И.

 Менделеевым в 1869–1871 годах и включал 63 элемента. За последние 50 лет периодическая таблица Менделеева пополнилась 17 новыми элементами (порядковые номера 102-118).

Российскими учеными из ОЯИЯ было открыто девять элементов, в том числе пять сверхтяжелых элементов за последние 10 лет.

  1. А. Павленко
  2. Сопутствующие линки:
  3. Печать Электронная почта

Источник: https://onznews.wdcb.ru/nov16/161109.html

Электронная справочно-информационная таблица "Периодическая система химических элементов Д.И.Менделеева"

Электронная информационная таблица «Периодическая система химических элементов Д.И.Менделеева»:

    • Является учебным справочно-информационным пособием.
    • Используется на учебных занятиях по химии, физике и другим предметам, при изучении которых необходима информация о физических и химических свойствах различных химических элементов.

Электронная таблица

      • Выполнена в виде двух стендов, которые монтируются на стену.
      • Наглядно демонстрирует основные физико-химические свойства элементов периодической системы Д.И. Менделеева.
      • Предназначена для стационарного размещения в закрытом помещении при комнатной температуре.
      • Удобна и проста в управлении.
      • Отображает свойства элементов на световом индикаторе.

Электронная информационная таблица «Периодическая система химических элементов Д.И. Менделеева» показывает значения:

25 основных физико-химических свойств

110 элементов периодической системы Д.И.Менделеева

Управление электронной таблицей осуществляется при помощи пульта дистанционного управления или посредством компьютера.

Электронная информационная таблица «Периодическая система химических элементов Д.И.Менделеева» показывает значения:

25 основных физико-химических свойств

110 элементов периодической системы Д.И.Менделеева:

  • электронная формула
  • атомная масса
  • радиусы атома и иона
  • сродство к электрону и протону
  • распределение электронов по энергетическим уровням и подуровням
  • энергия ионизации
  • процентное содержание в воде и земной коре
  • плотность и год открытия
  • степень окисления в окислителях
  • температуры кипения и плавления
  • удельная теплоемкость и коэффициент теплопроводности
  • относительная электроотрицательность по Полингу и стандартный электронный потенциал
  • температурный коэффициент линейного расширения и удельное электрическое сопротивление
  • количество изотопов и процентное количество основного изотопа.

Электронная информационная таблица «Периодическая система химических элементов Д.И. Менделеева» состоит из 2 отдельных блоков

На информационном блоке расположены

  • таблица с параметрами элементов
  • светодиодные табло:

«Атомный номер элемента» «Номер параметра» «Значения параметров» Габаритные размеры: 670 х 1025 х 50 мм

На демонстрационной таблице элементов расположены

  • периодическая система химических элементов Д.И. Менделеева
  • светодиодные индикаторы групп и рядов элементов

Габаритные размеры: 1222 х 1025 х 50 мм

Блоки выполнены в виде стендов, которые монтируются на стену при помощи петель, расположенных сзади на боковых стенках.

В комплект поставки также входят:

  • Пульт дистанционного управления.
  • Диск со специальным программным обеспечением.
  • 2 пальчиковые батарейки размера АА (1.5 В).
  • Руководство по эксплуатации.
  • Гарантийный талон.

Приобретая электронную информационную таблицу «Периодическая система химических элементов Д.И. Менделеева» вы получите программное обеспечение, разработанное специалистами компании «ЛАЙН» для управления электронными таблицами посредством компьютера

  • Электронная таблица подключается к компьютеру при помощи USB кабеля (компьютер и кабель в комплект поставки не входит).
  • Связь компьютера и электронной таблицы осуществляется через виртуальный COM-порт.
  • Элементы периодической таблицы можно выбирать как при помощи мышки, так и при помощи дистанционного пульта управления.
  • Интерфейс программы позволяет выбрать химический элемент и задать номер параметра.
  • Значение выбранного в программе параметра отображается на табло информационного блока электронной таблицы.
  • При переключении параметров с помощью пульта дистанционного управления информация автоматически выводится на мониторе компьютера.
  • Информация об элементах загружается из файлов, сохраненных на локальном диске компьютера, или с сайта Wikipedia (при наличии доступного соединения с Интернет).

Электронная таблица «Периодическая система химических элементов Д.И.Менделеева» является наглядным справочно-информационным пособием и предназначена для использования на учебных занятиях по химии, физике и другим предметам, при изучении которых необходима информация о физических и химических свойствах различных химических элементов.

Теперь вы сможете управлять электронной таблицей «Периодическая система химических элементов Д.И.Менделеева» посредством компьютера. Интерфейс программы позволяет выбрать химический элемент и задать номер параметра.

Автоматически значение выбранного параметра будет отражено и на табло информационного стенда электронной таблицы.

И наоборот — при переключении параметров с помощью пульта дистанционного управления, идентичная информация будет автоматически выводится на мониторе подключенного компьютера преподавателя.

Электронная таблица «Периодическая система химических элементов Д.И.Менделеева» показывает значения 25 основных физико-химических свойств 110 элементов периодической системы Д.И.Менделеева:

  • электронная формула;
  • атомная масса;
  • радиусы атома и иона;
  • сродство к электрону и протону;
  • распределение электронов по энергетическим уровням и подуровням;
  • энергия ионизации;
  • процентное содержание в воде и земной коре;
  • плотность и год открытия;
  • степень окисления в окислителях;
  • температуры кипения и плавления;
  • удельная теплоемкость и коэфициент теплопроводимости;
  • относительная электроотрицательность по Полингу и стандартный электронный потенциал;
  • температурный коэффициент линейного расширения и удельное электрическое сопротивление;
  • количество изотопов и процентное количество основного изотопа.

Электронная таблица состоит из 2 отдельных блоков — информационного блока и демонстрационной таблицы. Блоки выполнены в виде стендов, которые монтируются на стену при помощи петель, расположенных сзади на боковых стенках.

На информационном блоке представлена таблица с параметрами элементов, светодиодные табло «Атомный номер элемента», «Номер параметра» и «Значения параметров».

На демонстрационной таблице элементов представлена периодическая система и светодиодные индикаторы групп и рядов элементов.

   
  • РАЗМЕР           
  • Информационный блок 670x1025x50 мм
  • Демонстрационный блок 1222x1025x50 мм
  • Пульт управления 50x175x15 мм             
  • ВЕС                        
  • Информационный блок 7 кг
  • Демонстрационный блок 12 кг Пульт управления 0,2 кг

Источник: https://www.operpostavka.ru/katalog/product/view/63/464

Ссылка на основную публикацию
Adblock
detector