Все формулы по физике за 9-11 классы — студенческий портал

Основные формулы по физике: кинематика, динамика, статика

Итак, как говорится, от элементарного к сложному. Начнём с кинетических формул:

Все формулы по физике за 9-11 классы - Студенческий портал

Также давайте вспомним движение по кругу:

Все формулы по физике за 9-11 классы - Студенческий портал

Медленно, но уверенно мы перешли более сложной теме – к динамике:

Все формулы по физике за 9-11 классы - Студенческий портал

Уже после динамики можно перейти к статике, то есть к условиям равновесия тел относительно оси вращения:

Все формулы по физике за 9-11 классы - Студенческий портал

После статики можно рассмотреть и гидростатику:

Все формулы по физике за 9-11 классы - Студенческий портал

Куда же без темы “Работа, энергия и мощность”. Именно по ней даются много интересных, но сложных задач. Поэтому без формул здесь не обойтись:

Все формулы по физике за 9-11 классы - Студенческий портал

Основные формулы термодинамики и молекулярной физики

Последняя тема в механике – это “Колебания и волны”:

Все формулы по физике за 9-11 классы - Студенческий портал

Теперь можно смело переходить к молекулярной физике:

Все формулы по физике за 9-11 классы - Студенческий портал

Плавно переходим в категорию, которая изучает общие свойства макроскопических систем. Это термодинамика:

Все формулы по физике за 9-11 классы - Студенческий портал

Основные формулы электричества

Для многих студентов тема про электричество сложнее, чем про термодинамика, но она не менее важна. Итак, начнём с электростатики:

Все формулы по физике за 9-11 классы - Студенческий портал

  • Переходим к постоянному электрическому току:
  • Далее добавляем формулы по теме: “Магнитное поле электрического тока”
  • Электромагнитная индукция тоже важная тема для знания и понимания физики. Конечно, формулы по этой теме необходимы:
  • Ну и, конечно, куда же без электромагнитных колебаний:

Основные формулы оптической физики

Переходим к следующему разделу по физике – оптика. Здесь даны 8 основных формул, которые необходимо знать. Будьте уверены, задачи по оптике – частое явление:

Основные формулы элементов теории относительности

И последнее, что нужно знать перед экзаменом. Задачи по этой теме попадаются реже, чем предыдущие, но бывают:

Основные формулы световых квантов

Этими формулами приходится часто пользоваться в силу того, что на тему “Световые кванты” попадается немало задач. Итак, рассмотрим их:

На этом можно заканчивать. Конечно, по физике есть ещё огромное количество формул, но они вам не столь не нужны.

Это были основные формулы физики

В статье мы подготовили 50 формул, которые понадобятся на экзамене в 99 случая из 100.

Совет: распечатайте все формулы и возьмите их с собой. Во время печати, вы так или иначе будете смотреть на формулы, запоминая их. К тому же, с основными формулами по физике в кармане, вы будете чувствовать себя на экзамене намного увереннее, чем без них.

Надеемся, что подборка формул вам понравилась!

P.S. Хватило ли вам 50 формул по физике, или статью нужно дополнить? Пишите в х.

Источник: https://NauchnieStati.ru/spravka/bolee-50-osnovnyh-formul-po-fizike/

Формулы по физике для ЕГЭ и 7-11 класса

Рубрика: Подготовка к ЕГЭ по физике

  • Шпаргалка с формулами по физике для ЕГЭ
  • и не только (может понадобиться 7, 8, 9, 10 и 11 классам).
  • Для начала картинка, которую можно распечатать в компактном виде.
  • Все формулы по физике за 9-11 классы - Студенческий портал
  • Механика
  1. Давление                      Р=F/S
  2. Плотность                   ρ=m/V
  3. Давление на глубине жидкости   P=ρ∙g∙h
  4. Сила тяжести                       Fт=mg
  5. 5. Архимедова сила                 Fa=ρж∙g∙Vт
  6. Уравнение движения  при равноускоренном  движении

X=X0+υ0∙t+(a∙t2)/2                    S=(υ2-υ02) /2а         S=(υ+υ0) ∙t /2

  1. Уравнение скорости  при равноускоренном движении υ=υ0+a∙t
  2. Ускорение            a=(υυ 0)/t
  3. Скорость при движении по окружности υ=2πR/Т
  4. Центростремительное ускорение  a=υ2/R
  5. Связь периода с частотой ν=1/T=ω/2π
  6. II закон Ньютона                F=ma
  7. Закон Гука                          Fy=-kx
  8. Закон Всемирного тяготения  F=G∙M∙m/R2
  9. Вес тела, движущегося с ускорением а↑      Р=m(g+a)
  10. Вес тела, движущегося с ускорением а↓      Р=m(g-a)
  11. Сила трения                     Fтр=µN
  12. Импульс тела                       p=mυ
  13. Импульс силы                     Ft=∆p
  14. Момент силы                    M=F∙ℓ
  15. Потенциальная энергия тела, поднятого над землей Eп=mgh
  16. Потенциальная энергия упруго деформированного тела Eп=kx2/2
  17. Кинетическая энергия тела Ek=mυ2/2
  18. Работа            A=F∙S∙cosα
  19. Мощность     N=A/t=F∙υ
  20. Коэффициент полезного действия η=Aп/Аз
  21. Период колебаний математического маятника T=2π√ℓ/g
  22. Период колебаний пружинного маятника T=2 π √m/k
  23. Уравнение гармонических колебаний  Х=Хmax∙cos ωt
  24. Связь длины волны, ее скорости и периода λ= υТ

Молекулярная физика и термодинамика

  1. Количество вещества              ν=N/ Na
  2. Молярная масса                           М=m/ν
  3. Cр. кин. энергия молекул одноатомного газа Ek=3/2∙kT
  4. Основное уравнение МКТ      P=nkT=1/3nm0υ2
  5. Закон Гей – Люссака (изобарный процесс)    V/T =const
  6. Закон Шарля (изохорный процесс)    P/T =const
  7. Относительная влажность φ=P/P0∙100%
  8. Внутр. энергия идеал. одноатомного газа U=3/2∙M/µ∙RT
  9. Работа газа A=P∙ΔV
  10. Закон Бойля – Мариотта (изотермический процесс)    PV=const
  11. Количество теплоты при нагревании  Q=Cm(T2-T1)
  12. Количество теплоты при плавлении   Q=λm
  13. Количество теплоты при парообразовании  Q=Lm
  14. Количество теплоты при сгорании топлива  Q=qm
  15. Уравнение состояния идеального газа PV=m/M∙RT
  16. Первый закон термодинамики   ΔU=A+Q
  17. КПД тепловых двигателей         η= (Q1 — Q2)/ Q1
  18. КПД идеал. двигателей  (цикл Карно)     η= (Т1 — Т2)/ Т1

https://5-ege.ru/formuly-po-fizike-dlya-ege/

Электростатика и электродинамика – формулы по физике

  1. Закон Кулона F=k∙q1∙q2/R2
  2. Напряженность электрического поля E=F/q
  3. Напряженность эл. поля точечного заряда E=k∙q/R2
  4. Поверхностная плотность зарядов             σ = q/S
  5. Напряженность эл.

    поля бесконечной плоскости E=2πkσ

  6. Диэлектрическая проницаемость ε=E0/E
  7. Потенциальная энергия взаимод.

    зарядов W= k∙q1q2/R

  8. Потенциал φ=W/q
  9. Потенциал точечного заряда φ=k∙q/R
  10. Напряжение U=A/q
  11. Для однородного электрического поля U=E∙d
  12. Электроемкость C=q/U
  13. Электроемкость плоского конденсатора C=S∙ε∙ε0/d
  14. Энергия заряженного конденсатора W=qU/2=q²/2С=CU²/2
  15. Сила тока I=q/t
  16. Сопротивление проводника R=ρ∙ℓ/S
  17. Закон Ома для участка цепи I=U/R
  18. Законы послед. соединения I1=I2=I, U1+U2=U, R1+R2=R
  19. Законы паралл. соед.   U1=U2=U, I1+I2=I, 1/R1+1/R2=1/R
  20. Мощность электрического тока P=I∙U
  21. Закон Джоуля-Ленца Q=I2Rt
  22. Закон Ома для полной цепи I=ε/(R+r)
  23. Ток короткого замыкания (R=0)      I=ε/r
  24. Вектор магнитной индукции B=Fmax/ℓ∙I
  25. Сила Ампера Fa=IBℓsin α
  26. Сила Лоренца Fл=Bqυsin α
  27. Магнитный поток Ф=BSсos α      Ф=LI
  28. Закон электромагнитной индукции Ei=ΔФ/Δt
  29. ЭДС индукции в движ проводнике Ei=Вℓυsinα
  30. ЭДС самоиндукции Esi=-L∙ΔI/Δt
  31. Энергия магнитного поля катушки Wм=LI2/2
  32. Период колебаний кол. контура T=2π ∙√LC
  33. Индуктивное сопротивление XL=ωL=2πLν
  34. Емкостное сопротивление Xc=1/ωC
  35. Действующее значение силы тока Iд=Imax/√2,
  36. Действующее значение напряжения Uд=Umax/√2
  37. Полное сопротивление Z=√(Xc-XL)2+R2

Оптика

  1. Закон преломления света     n21=n2/n1= υ 1/ υ 2
  2. Показатель преломления      n21=sin α/sin γ
  3. Формула тонкой линзы       1/F=1/d + 1/f
  4. Оптическая сила линзы       D=1/F
  5. max интерференции: Δd=kλ,
  6. min интерференции: Δd=(2k+1)λ/2
  7. Диф.решетка             d∙sin φ=k λ

Квантовая физика

  1. Ф-ла Эйнштейна для фотоэффекта  hν=Aвых+Ek, Ek=Uзе
  2. Красная граница фотоэффекта νк = Aвых/h
  3. Импульс фотона P=mc=h/ λ=Е/с

Физика атомного ядра

  1. Закон радиоактивного распада N=N0∙2-t/T
  2. Энергия связи атомных ядер

ECB=(Zmp+Nmn-Mя)∙c2

СТО

  1. t=t1/√1-υ2/c2
  2. ℓ=ℓ0∙√1-υ2/c2
  3. υ2=(υ1+υ)/1+ υ1∙υ/c2
  4. Е = mс2

Скачать эти формулы в doc: formuly-po-fizike-5-ege.ru (файл расположен на 5-ege.ru).

Рекомендуем:

  • Как решать задачи по химии, готовые решения
  • ЕГЭ по физике с решениями, часть А
  • Решение задач по физике, ЕГЭ – часть С

Источник: https://5-ege.ru/formuly-po-fizike-dlya-ege/

Формулы по Физике за 9 класс

Page 2

Все формулы по физике за 9-11 классы - Студенческий портал
Атомная физика раздел физики, в котором изучают строение и состояние атомов. А. ф. возникла в конце 19 — начале 20 вв. В 10-х гг. 20 в. было установлено, что атом состоит из ядра и электронов, связанных электрическими силами. На первом этапе своего развития А. ф. охватывала также вопросы, связанные со строением атомного ядра. В 30-х гг. выяснилось, что природа взаимодействий, имеющих место в атомном ядре, иная, чем во внешней оболочке атома, и в 40-х гг. ядерная физика выделилась в самостоятельную область науки. В 50-х гг. от неё отпочковалась физика элементарных частиц, или физика высоких энергий.

   [Кг] 

   [г] 

Атомную массу Al определили следующим образом. Известные количества Al были превращены в нитрат, сульфат или гидроксид и затем прокалены до оксида алюминия (), количество которого точно определяли. Из соотношения между двумя известными массами и атомными массами алюминия и кислорода нашли атомную массу алюминия

  .
  

В формуле мы использовали :

 — Боровский радиус

   [Дж*с]  — Постоянная планка

   [Кг]  — Масса электрона

 — Постоянная тонкой структуры

 — Скорость света в вакууме.
  

Измерения масс ядер показывают, что масса ядра (Мя) всегда меньше суммы масс покоя слагающих его свободных нейтронов и протонов.

  • При делении ядра: масса ядра всегда меньше суммы масс покоя образовавшихся свободных частиц.
  • При синтезе ядра: масса образовавшегося ядра всегда меньше суммы масс покоя свободных частиц, его образовавших.
  • В формуле мы использовали :

— Дефект массы

— Масса нейтрона

— Масса протона

— Масса ядра

Z- число протонов

N=A-Z- число нуклонов.

  

Для практического использования закон радиоактивного распадаможно записать так :

Скорость распада, то есть число распадов в единицу времени, также падает экспоненциально

  

Таблица некоторых значений радиоактивного распада:

В формуле мы использовали :

 — Начальное число радиоактивных ядре при t=0

 — Период полураспада
 — Постоянная распада (вероятность распада ядра в единицу времени)
 — Скорость распада в начальный момент времени t = 0

Так же фотон имеет:

Энергия фотона:   

Массу фотона:   

В формуле мы использовали:

 — Импульс фотона
 — Энергия фотона

 — Постоянная Планка
 — Скорость света в вакууме

 — Длина волны
  

Таким образом энергия фотона увеличивается с ростом частоты (или с уменьшением длины волны), например, фотон фиолетового света (0.38 мкм) имеет большую энергию, чем фотон красного света (0.77 мкм).

Так же фотон имеет:

Массу фотона:   

Импульс фотона:   

В формуле мы использовали :

 — Энергия фотона

 — Постоянная Планка
 — Скорость света в вакууме

 — Длина волны

  

Формула комптоновской длины волны получается из формулы Де-Бройлевской длины волны путём замены скорости частицы v на скорость света c.

Де-Бройлевской длины волны :   

Название Комптоновская длина волны связано с тем, что величина определяет изменение длины волны электромагнитного излучения при комптоновском рассеянии.

Для электрона :   

Для протона :   

Чаще всего используется приведенная Комптоновская длина волны :

  
Для электрона :   

Для протона : 

В Формуле мы использовали :

 — Комптоновская длина волны

 — Приведенная Комптоновская длина волны

 — Скорость света

 — Постоянная Планка

 — Масса электрона

 — Постоянная Дирака.
   [Кг] 

   [Мэв] 

В формуле мы использовали :

 — Масса нейтрона.
   [Кг] 

   [Мэв] 

Отношение масс протона и электрона, равное 1836,152 672 1 или если сказать более наглядно, то 

В формуле мы использовали :

 — Масса протона.
  

Фотон не может иметь массу покоя, она будет равняться нулю. Фотон обладает массу, когда он двигается со скорость света.

Так же фотон имеет:

Энергия фотона:   

Импульс фотона:   

В Формуле мы использовали :

 — Энергия фотона

 — Постоянная Планка
 — Скорость света в вакууме

 — Длина волны.
   [Кг] 

 — Масса электрона
 

 — Орбитальный механический момент
  

Произведение 2Пrv дает скорость движения электрона v, поэтому можно написать, что

  

 — Орбитальный магнитный момент

 — Число оборотов в секунду.
  

В общем виде скорость радиоактивного распада записывается, как :

  

Для того, чтоб нам стало более понятно, продифференцируем выражение для зависимости числа атомов от времени и получим:

  

И тогда у нас получается, что скорость радиоактивного распада

  

Таким образом, зависимость от времени числа не распавшихся радиоактивных атомов и скорости распада описывается одной и той же постоянной 

Таблица некоторых значений постоянных распада:

В Формуле мы использовали :

 — Период полураспада
 — Начальное число радиоактивных ядре при t=0

 — Постоянная распада, которая характеризует вероятность радиоактивного распада за единицу времени

 — Скорость распада в начальный момент времени t = 0.
 

Если рассматривается группу независимых частиц, то в течение времени τ число оставшихся частиц уменьшается (в среднем) в е раз от количества частиц в начальный момент времени.

  

Таблица некоторых значений постоянных распада:

В Формуле мы использовали :

 — Среднее время жизни радиоактивного ядра

 — Постоянная распада, которая характеризует вероятность радиоактивного распада за единицу времени

 — Число Эйлера

 — Период полураспада

Источник: http://tytphysiki.blogspot.com/p/9.html

Все формулы по физике 9 класса

Закон Формула Определение Единицы измерения
ЗАКОНЫ ВЗАИМОДЕЙСТВИЯ И ДВИЖЕНИЯ ТЕЛ
Вычисление перемещения АВ2 = АС2 + ВС2 Перемещение – вектор, соединяющий начальную точку движения тела с его конечной точкой.
Проекция вектора перемещения Sx = x2 – x1 x1 – начальная координата, [м]
x2 – конечная координата, [м]
Sx – перемещение, [м]
Формула расчета скорости движения тела v = s/t Скорость – физическая величина, равная отношению перемещения к промежутку времени, за которое это перемещение произошло. v – скорость, [м/с]
s – путь, [м]
t – время, [c]
Уравнение движения x = x0 + vxt x0 – начальная координата, [м]
x – конечная координата, [м]
v – скорость, [м/с]
t – время, [c]
Формула для вычисления ускорения движения тела a = v — v0⃗/t Ускорение – физическая величина, которая характеризует быстроту изменения скорости. a – ускорение, [м/с2]
v – конечная скорость, [м/с]
v0 – начальная скорость, [м/с]
t – время, [c]
Уравнение скорости v = v0⃗+ at v – конечная скорость, [м/с]
v0 – начальная скорость, [м/с]
a – ускорение, [м/с2]
t – время, [c]
Уравнение Галилея S = v0t + at2/2 S – перемещение, [м]
v – конечная скорость, [м/с]
v0 – начальная скорость, [м/с]
a – ускорение, [м/с2]
t – время, [c]
Закон изменения координаты тела при прямолинейном равноускоренном движении x = x0 + v0t + at2/2 x0 – начальная координата, [м]
x – конечная координата, [м]
v – конечная скорость, [м/с]
v0 – начальная скорость, [м/с]
a – ускорение, [м/с2]
t – время, [c]
Первый закон Ньютона Если на тело не действуют никакие тела либо их действие скомпенсировано, то это тело будет находиться в состоянии покоя или двигаться равномерно и прямолинейно.
Второй закон Ньютона a = F ⃗/m Ускорение, приобретаемое телом под действием силы, прямо пропорционально величине этой силы и обратно пропорционально массе тела. a – ускорение, [м/с2]
F – сила, [Н]
m – масса, [кг]
Третий закон Ньютона |F1⃗ |=|F2⃗| F11 ⃗ = -F2⃗ Сила, с которой первое тело действует на второе, равна по модулю и противоположна по направлению силе, с которой второе тело действует на первое F – сила, [Н]
Формула для вычисления высоты, с которой падает тело H=gt2/2 Н – высота, [м]
t – время, [c]
g ≈ 9,81 м/с2 – ускорение свободного падения
Формула для вычисления высоты при движении вертикально вверх h=v0t — gt2/2 h – высота, [м]
v0 – начальная скорость, [м/с]
t – время, [c]
g ≈ 9,81 м/с2 – ускорение свободного падения
Формула для вычисления веса тела при движении вверх с ускорением P = m (g + a) P – вес тела, [Н]
m – масса тела, [кг]
g ≈ 9,81 м/с2 – ускорение свободного падения
a – ускорение тела, [м/с2]
Формула для вычисления веса тела при движении вниз с ускорением P = m (g – a) P – вес тела, [Н]
m – масса тела, [кг]
g ≈ 9,81 м/с2 – ускорение свободного падения
a – ускорение тела, [м/с2]
Формула закона F = Gm1m2/r2 Закон всемирного тяготения: два тела притягиваются друг к другу с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними. F – сила, [Н]
G = 6,67 · 10-11 [Н·м2/кг2] – гравитационная постоянная
m – масса тела, [кг]
r – расстояние между телами, [м]
Формула расчета ускорения свободного падения на разных планетах g = G Mпл/Rпл2 g – ускорение свободного падения, [м/с2]
G = 6,67 · 10-11 [Н·м2/кг2 – гравитационная постоянная
M – масса планеты, [кг]
R – радиус планеты, [м]
Формула расчета ускорения свободного падения g = GM3/(R3+H)2 g – ускорение свободного падения, [м/с2]
G = 6,67 · 10-11 [Н·м2/кг2 – гравитационная постоянная
M – масса Земли, [кг]
R – радиус Земли, [м]
Н – высота тела над Землей, [м]
Формула расчета центростремительного ускорения а=υ2/r a – центростремительное ускорение, [м/с2]
v – скорость, [м/с]
r – радиус окружности, [м]
Формула периода движения по окружности T = 1/ν = (2πr)/υ = t/N Т – период, [с]
ν – частота вращения,
[с-1]
t – время, [с]
N – число оборотов
Формула расчета угловой скорости ω = 2π/T = 2πν = υr ω – угловая скорость, [рад/с]
υ – линейная скорость, [м/с]
Т – период, [с]
ν – частота вращения, [с-1]
r – радиус окружности, [м]
Формула импульса тела p = mv Импульсом называют произведение массы тела на его скорость. p – импульс тела, [кг·м/с]
m – масса тела, [кг]
υ – скорость, [м/с]
Формула закона сохранения импульса p1 + p2 = p1’ + p2’
m1v + m2u = m1v’ + m2u’
Закон сохранения импульса: в замкнутой системе импульс всех тел остается величиной постоянной. p – импульс тела, [кг·м/с]
m – масса тела, [кг]
υ – скорость 1-го тела, [м/с]
u – скорость 2-го тела, [м/с]
Формула импульса силы P = Ft p – импульс тела, [кг·м/с]
F – сила, [Н]
t – время, [c]
Формула механической работы A = Fs Механическая работа – физическая величина, равная произведению модуля силы на величину перемещения тела в направлении действия силы A – работа, [Дж]
F – сила, [Н]
s – пройденный путь, [м]
Формула расчета мощности N = A/t Мощность – физическая величина, характеризующая быстроту совершения механической работы. N – мощность, [Вт]
A – работа, [Дж]
t – время, [c]
Формула для нахождения коэффициента полезного действия (КПД) η = Aп/Aз∙100 КПД – отношение полезной работы к затраченной работе. Aп – полезная работа, [Дж]
Aз – затраченная работа, [Дж]
Формула расчета потенциальной энергии Ek = mv2/2 Кинетическая энергия – энергия, которой обладает тело вследствие своего движения. Ek – кинетическая энергия тела, [Дж]
m – масса тела, [кг]
v – скорость движения тела, [м/с]
Формула закона сохранения полной механической энергии mv12/2 + mgh1 = mv22/2 + mgh2 Закон сохранения полной механической энергии: полная механическая энергия тела, на которое не действуют силы трения и сопротивления, в процессе его движения остается неизменной. m – масса тела, [кг]
g ≈ 9,81 м/с2 – ускорение свободного падения
v1 – скорость тела в начальный момент времени, [м/с]
v2 – скорость тела в конечный момент времени, [м/с]
h1 – начальная высота, [м]
h2 – конечная высота, [м]
Формула силы трения Fтр = μmg Сила трения – сила, возникающая при соприкосновении двух тел и препятствующая их относительному движению. Fтр – сила трения, [Н]
μ – коэффициент трения
m – масса тела, [кг]
g ≈ 9,81 м/с2 – ускорение свободного падения
Уравнение колебаний x = A cos (ωt + φ0) А – амплитуда колебаний, [м]
х – смещение, [м] t – время, [c]
ω – циклическая частота, [рад/с]
φ0 – начальная фаза, [рад]
Формула периода T = 1/ν = 2πr/υ = t/N Т – период, [с]
ν – частота колебании, [с-1]
t – время колебании, [с]
N – число колебаний
Формула периода для математического маятника T= 2π √L/g Т – период, [с]
g ≈ 9,81 м/с2 – ускорение свободного падения
L – длина нити, [м]
Формула периода для пружинного маятника T = 2π √m/K Т – период, [с]
m – масса груза, [кг]
К – жесткость пружины, [Н/м]
Формула длины волны λ = υТ = υ/ν λ – длина волны, [м]
Т – период, [с]
ν – частота, [с-1]
υ – скорость волны, [м/с]
Формула расчета плотности тела ρ=m/V Плотность вещества – показывает, чему равна масса вещества в единице объема. ρ – плотность, [кг/м3]
m – масса, [кг]
V – объем тела, [м3]
Формула гидростатического давления жидкости p = ρgh p – давление, [Па], [Н/м]
ρ – плотность жидкости, [кг/м3]
g ≈ 9,81 м/с2 – ускорение свободного падения
h – высота столба жидкости, [м]
Формула силы Архимеда FA = ρgV Закон Архимеда: на всякое тело, погруженное в жидкость (газ(, действует выталкивающая сила, равная весу вытесненной жидкости (газа). FА – сила Архимеда, [Н]
ρ – плотность жидкости или газа [кг/м3]
g ≈ 9,81 м/с2 – ускорение свободного падения
V – объем тела, [м3]
ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ
Формула расчета силы Ампера FA = BIL sinα Закон Ампера: сила действия однородного магнитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником. FA – сила Ампера, [Н]
В – магнитная индукция, [Тл]
I – сила тока, [А]
L – длина проводника, [м]
Формула расчета силы Лоренца Fл = q B υ sinα Сила Лоренца – сила, действующая на точечную заряженную частицу, движущуюся в магнитном поле. Она равна произведению заряда, модуля скорости частицы, модуля вектора индукции магнитного поля и синуса угла между вектором магнитного поля и скоростью движения частицы. Fл – сила Лоренца, [Н]
q – заряд, [Кл]
В – магнитная индукция, [Тл]
υ – скорость движения заряда, [м/с]
Формула радиуса движения частицы в магнитном поле r = mυ/qB r – радиус окружности, по которой движется частица в магнитном поле, [м]
m – масса частицы, [кг]
q – заряд, [Кл]
В – магнитная индукция, [Тл]
υ – скорость движения заряда, [м/с]
Формула для вычисления магнитного потока Ф = B S cosα Ф – магнитный поток, [Вб]
В – магнитная индукция, [Тл]
S – площадь контура, [м2]
Формула для вычисления величины заряда q = It Заряд – это есть произведение силы тока на время, в течение которого этот заряд протекает по проводнику. q – заряд, [Кл]
I – сила тока, [А]
t – время, [c]
Закон Ома для участка цепи I=U/R Закон Ома: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению. I – сила тока, [А]
U – напряжение, [В]
R – сопротивление, [Ом]
Формула для вычисления удельного сопротивления проводника R = ρ * L/Sρ = R * S/L Удельное сопротивление – величина, характеризующая электрические свойства вещества, из которого изготовлен проводник. ρ – удельное сопротивление вещества, [Ом·мм2/м]
R – сопротивление, [Ом]
S – площадь поперечного сечения проводника, [мм2]
L – длина проводника, [м]
Законы последовательного соединения проводников I = I1 = I2
U = U1 + U2
Rобщ = R1 + R2
Последовательным соединением называется соединение, когда элементы идут друг за другом. I – сила тока, [А]
U – напряжение, [В]
R – сопротивление, [Ом]
Законы параллельного соединения проводников U = U1 = U2
I = I1 + I2
1/Rобщ = 1/R1 +1/R2
Параллельным соединением проводников называется такое соединение, при котором начала и концы проводников соединяются вместе. I – сила тока, [А]
U – напряжение, [В]
R – сопротивление, [Ом]
Формула для вычисления величины заряда. q = It Заряд – это есть произведение силы тока на время, в течение которого этот заряд протекает по проводнику. q – заряд, [Кл]
I – сила тока, [А]
t – время, [c]
Формула для нахождения работы электрического тока A = Uq
A = UIt
Работа – это величина, которая характеризует превращение энергии из одного вида в другой, т.е. показывает, как энергия электрического тока, будет превращаться в другие виды энергии – механическую, тепловую и т. д.
Работа электрического поля – это произведение электрического напряжения на заряд, протекающий по проводнику. Работа, совершаемая для перемещения электрического заряда в электрическом поле.
A – работа электрического тока, [Дж]
U – напряжение на концах участка, [В]
q – заряд, [Кл]
I – сила тока, [А]
t – время, [c]
Формула электрической мощности P = A/t
P = UI
P = U2/R
Мощность – работа, выполненная в единицу времени. P – электрическая мощность, [Вт]
A – работа электрического тока, [Дж]
t – время, [c]
U – напряжение на концах участка, [В]
I – сила тока, [А]
R – сопротивление, [Ом]
Формула закона Джоуля-Ленца Q = I2Rt Закон Джоуля-Ленца: при прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику. Q – количество теплоты, [Дж]
I – сила тока, [А];
t – время, [с].
R – сопротивление, [Ом].
Закон отражения света Луч падающий, луч отраженный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, при этом угол падения луча равен углу отражения луча.
Закон преломления sinα/sinγ = n2/n1 При увеличении угла падения увеличивается и угол преломления, то есть при угле падения, близком к 90°, преломлённый луч практически исчезает, а вся энергия падающего луча переходит в энергию отражённого. n – показатель преломления одного вещества относительно другого
Формула вычисления абсолютного показателя преломления вещества n = c/v Абсолютный показатель преломления вещества – величина, равная отношению скорости света в вакууме к скорости света в данной среде. n – абсолютный показатель преломления вещества
c – скорость света в вакууме, [м/с]
v – скорость света в данной среде, [м/с]
Закон Снеллиуса sinα/sinγ = v1/v2 = n Закон Снеллиуса (закон преломления света): отношение синуса угла падения к синусу угла преломления есть величина постоянная. n – показатель преломления одного вещества относительно другого v – скорость света в данной среде, [м/с]
Показатель преломления среды sinα/sinγ = n Отношение синуса угла падения к синусу угла преломления есть величина постоянная. n – показатель преломления среды
Формула оптической силы линзы D = 1/F Оптическая сила линзы – способность линзы преломлять лучи. D – оптическая сила линзы, [дптр]
F – фокусное расстояние линзы, [м]
Формула тонкой линзы 1/F = 1/d + 1/f F – фокусное расстояние линзы, [м]
d – расстояние от предмета до линзы, [м]
f – расстояние от линзы до изображения, [м]
СТРОЕНИЕ АТОМА И АТОМНОГО ЯДРА
Массовое число M = Z + N M – массовое число
Z – число протонов (электронов), зарядовое число
N – число нейтронов
Формула массы ядра Мя = МА – Zme Mя – масса ядра, [кг]
МА – масса изотопа , [кг]
me – масса электрона, [кг]
Формула дефекта масс ∆m = Zmp+ Nmn – MЯ Дефект масс – разность между суммой масс покоя нуклонов, составляющих ядро данного нуклида, и массой покоя атомного ядра этого нуклида. ∆m – дефект масс, [кг]
mp – масса протона, [кг]
mn – масса нейтрона, [кг]
Формула энергии связи Есвязи = ∆m c2 Энергия связи ядра – минимальная энергия, необходимая для того, чтобы разделить ядро на составляющие его нуклоны (протоны и нейтроны). Есвязи – энергия связи, [Дж]
m – масса, [кг]
с = 3·108м/с – скорость света
Альфа распад M/Z * X → 4/2 * α + M/Z — 4/2 * Y

Источник: https://zakon-oma.ru/formuly-po-fizike-9-klassa.php

Все формулы и основные законы по физике в 6-9 классах

На данной странице представлен список всех формул по физике и основных физических законов, изучаемых в школах и гимназиях в 6-9 классах. Файл создан для выпускников 9-ых классов, которые готовятся к поступлению в лицеи и колледжи.

Данный документ поможет таким ученикам систематизировать полученные ранее знания и хорошенько повторить всё что нужно.

Файл включает все формулы и основные законы, относящиеся к следующим темам по физике: Кинематика; Динамика; Статика; Гидростатика; Импульс; Энергия; Молекулярная физика и термодинамика; Электростатика и электрический ток; Оптика.

Изучать все формулы и основные законы по физике в 6-9 классах онлайн:

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь).

В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка.

Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Источник: https://educon.by/index.php/formuly/fizika69

Физика 9 класс

    Равномерное прямолинейное движение

  • Скорость
    Скоростью равномерного прямолинейного движения называют постоянную векторную величину (), численно равную перемещению (), которое совершает тело за единицу времени (t).

    СИ: м/с

  • Проекция скорости на координатную ось
    Проекция скорости (vx) на координатную ось равна изменению координаты (x-x0) в единицу времени (t).

    СИ: м/с

  • Перемещение
    Перемещение () при равномерном прямолинейном движении равно произведению скорости () на время (t) этого перемещения.

    СИ: м

  • Проекция перемещения на координатную ось
    Проекция перемещения (sx) при равномерном прямолинейном перемещении равна изменению координаты (x-x0).

    СИ: м

    Равноускоренное прямолинейное движение

  • Средняя скорость при неравномерном прямолинейном движении
    Средняя скорость () при неравномерном прямолинейном движении равна отношению перемещения () на время (t), в течение которого оно совершено.

    СИ: м

  • Ускорение
    Ускорение тела () при его равноускоренном движении — величина, равная отношению изменения скорости () к промежутку времени (t), в течение которого это изменение произошло.

    СИ: м/c2

  • Скорость
    Скорость () тела в любой момент времени (t) равноускоренного прямолинейного движения определяется начальной скоростью () тела и его ускорением ().
    ,
    (при )
    СИ: м/с
  • Перемещение
    Перемещение (s) тела в любой момент времени (t) равноускоренного прямолинейного движения определяется начальной скоростью (v0) тела и его конечной скоростью (v=v0+a×t).
    1) ,
    (при )
    2) ,
    (при )
    СИ: м
  • Координата тела
    Координата (x) тела в любой момент времени (t) определяется начальной координатой (x0), начальной скоростью и ускорением (a).

    СИ: м

  • Ускорение свободного падения
    Ускорение свободного падения (g) одинаково для всех тел на данной широте Земного шара.
    g=9,81
    СИ: м/c2
    Равномерное движение по окружности

  • Угловая скорость
    Угловая скорость (ω) тела при равномерном движении по окружности характеризует быстроту изменения угла поворота и:
    1) равна отношению изменения угла поворота (Δφ) к промежутку времени (Δt), за которое это изменение произошло;
    2) определяется отношением линейной скорости (v) к радиусу окружности (r);
    3) пропорциональна частоте обращения (n);
    4) обратно пропорциональна периоду обращения (Т)
    ;
    ;
    ;

    СИ: рад/с

  • Частота обращения
    Частота обращения (n) — число оборотов по окружности в единицу времени — величина, обратная периоду обращения (Т).

    СИ: 1/с

  • Период обращения
    Период обращение (Т) — время совершения телом одного полного оборота.
    ,

    СИ: с

  • Линейная скорость
    Скорость тела при равномерном движении по окружности (v):
    1) пропорциональна длине окружности (2πr) и обратно пропорциональна периоду обращения (T)
    2) пропорциональна длине окружности (2πr) и частоте обращения (n).
    ,

    СИ: м/с

  • Центростремительное ускорение
    Ускорение (а) тела, равномерно движущегося по окружности, направлено по радиусу окружности к её центру и:
    1) пропорционально квадрату скорости (v) и обратно пропорционально радиусу окружности (r);
    2) связано с периодом обращения (T) и частотой обращения (n) формулами:
    ;
    ;

    СИ: м/с2

    Законы Ньютона

  • Первый закон Ньютона
    Существуют такие системы отсчета, относительно которых тело сохраняет состояния покоя или равномерного прямолинейного движения, если на него не действуют другие тела или равнодействующая всех приложенных к телу сил равна нулю.
    , при
  • Второй закон Ньютона
    Равнодействующая всех сил () приложенных к телу, равна произведению массы (m) тела на его ускорение (), сообщенное этими силами.

    СИ: Н

  • Третий закон Ньютона
    Тела действуют друг на друга с силами ( и ) и равными по модулю и противоположными по направлению.

    СИ: Н

    Силы в природе

  • Закон Гука
    Сила упругости (Fупр), возникающая при деформации тела, пропорциональна удлинению тела (x) и направлена противоположно направлению перемещения частиц тела при деформации.
    Fупр = -κ×x , (κ — жесткость тела при деформации)
    СИ: Н
  • Закон всемирного тяготения
    Тела притягиваются друг к другу с силой (F), модуль которой пропорционален произведению их масс (m1 и m2) и обратно пропорционален квадрату расстояния между их центрами масс (R).
    , (G — гравитационная постоянная)
    СИ: Н
  • Гравитационная постоянная
    Гравитационная постоянная (G) численно равна силе притяжения двух точечных тел массой один килограмм каждое при расстоянии между ними один метр.

    СИ: (Н×м2)/кг2

  • Сила тяжести
    Сила тяжести (Fт) равна произведению массы тела (m) на ускорение свободного падения (g).
    FT=m×g
    СИ: Н
  • Ускорение свободного падения
    1) вблизи поверхности Земли (g0);
    2) на высоте (h) от поверхности Земли (gh).
    ;
    ,
    где G — гравитационная постоянная;
    M — масса Земли;
    R — радиус Земли.
    СИ: м/c2
  • Вес покоящихся и движущихся тел
    Вес тела (Р):
    1) в состоянии покоя или движущегося равномерно и прямолинейно: ;
    2) движущегося вверх с ускорением (а): ;
    3) движущегося вниз с ускорением (а): ;
    4) движущегося со скоростью (v) на выпуклой поверхности радиусом (R) в верхней точке: ;
    5) движущегося со скоростью (v) на вогнутой поверхности радиусом (R) в нижней точке: ;
    6) в невесомости:
    СИ: Н
    Движение тела под действием силы тяжести

  • Движение тела под углом к горизонту.
    Если начальная скорость тела (v0) направлена под углом (α) к горизонту, то:
    1) проекции вектора скорости () на горизонтальную ось (v0x) и вертикальную ось (v0y): ;;
    2) вертикальная координата (у) траектории движения тела в произвольный момент времени (t): ;
    3) максимальная высота (hmax) подъёма: ;
    4) время подъёма (tподъёма) на максимальную высоту (hmax): tподъёма = ;
    5) время полета (tполета) над горизонтальной поверхностью: tполета = ;
    6) дальность полёта (l) над горизонтальной поверхностью: ;
    7) наибольшая дальность (lmax) полёта над горизонтальной поверхностью (при α=45°):
    СИ: м/с, м, с
  • Горизонтально брошенное тело
    Если тело брошено горизонтально (h) с начальной скоростью (v0), то:
    1) время падения (t): ;
    2) дальность падения (l): ;
    3) высота полёта (h):
    СИ: с, м
  • Скорость искусственного спутника Земли
    Скорость тела (v) в горизонтальном направлении, при которой оно двигается по окружности вокруг Земли (радиус Земли R, масса Земли М):
    1) вблизи поверхности Земли (первая космическая скорость):;
    2) на высоте (h) над Землей: , (G — гравитационная постоянная)
    СИ: м/с
    Силы трения

  • Трение покоя
    Максимальная сила трения покоя (Fтр)max пропорциональна силе нормального давления (N) и зависит от характера взаимодействия соприкасающихся поверхностей тел, определяемого коэффициентом трения (μ)
    (Fтр)max=μ×N
    СИ: Н
  • Трение скольжения
    Сила трения скольжения (Fтр) пропорциональна силе давления (N), коэффициенту трения (μ) и направлена противоположно направлению движения тела.
    Fтр=μ×N
    СИ: Н
  • Коэффициент трения
    Коэффициент трения (μ) вычисляют как отношение модулей силы трения (Fтр) и силы давления (N).
    μ=Fтр/N
  • Движение тела под действием силы трения
    1) Путь (l), пройденный движущимся телом под действием силы трения до полной остановки (тормозной путь), прямо пропорционален квадрату начальной скорости (v0) и обратно пропорционален коэффициенту трения (μ): , (g — ускорение свободного падения).
    2) Время (t) движения тела под действием силы трения до момента полной остановки (время торможения) прямо пропорционально начальной скорости (v0) и обратно пропорционально коэффициенту трения (μ):
    СИ: м, с
    Движение тела под действием нескольких сил

  • Условие равновесия тела (как материальной точки).
    Тело находится в равновесии (в покое или движется равномерно и прямолинейно), если сумма проекций всех сил (), действующих на тело, на любую ось (ОХ, ОY, O, …) равна нулю.
    ;
    ;

    СИ: Н

  • Движение тела по наклонной плоскости
    Ускорение тела, скользящего вниз по наклонной плоскости с углом наклона (α) и коэффициентом трения тела о плоскость (μ), не зависит от массы тела и равно: , (g — ускорение свободного падения)
    СИ: м/с2
  • Движение связанных тел через неподвижный блок
    Ускорение двух тел, массами m1 и m2, связанных нитью, перекинутой через неподвижный блок, равно:
    , (g — ускорение свободного падения)
    СИ: м/с2
    Законы сохранения в механике

  • Импульс тела
    Импульс тела () — векторная величина, равная произведению массы (m) тела на его скорость ().

    СИ: (кг×м)/с

  • Импульс силы
    Импульс силы ( — произведение силы на время t её действия) равен изменению импульса тела.

    СИ: Н×с

  • Закон сохранения импульса
    Геометрическая сумма импульсов тел (), составляющих замкнутую систему, остается постоянной при любых движениях и взаимодействиях тел системы.

    СИ: Н×с

  • Механическая работа силы
    Работа (А) постоянной силы равна произведению модулей векторов силы () и перемещения () на косинус угла между этими векторами.

    СИ: Дж

  • Теорема о кинетической энергии
    Работа (А) силы (или равнодействующей сил) равна изменению кинетической энергии (Ek1 и Ek2) движущегося тела.
    ,
    где m — масса тела, v1, v2 — начальная и конечная скорости тела
    СИ: Дж
  • Потенциальная энергия поднятого тела
    Потенциальная энергия (ЕП) тела, поднятого на некоторую высоту (h) над нулевым уровнем, равна работе (А) силы тяжести (m×g) при падении тела с этой высоты до нулевого уровня.
    A=ЕП=m×g×h
    СИ: Дж
  • Работа силы тяжести
    Работа (А) силы тяжести (mg) не зависит от пути, пройденного телом, а определяется разностью высот (Δh=h2-h1) положения тела в конце и в начале пути и равна разности его потенциальных энергий (EП2 и EП1).
    A=-(EП2-EП1)=-m×g×Δh
    СИ: Дж
  • Потенциальная энергия деформированного тела
    Потенциальная энергия (ЕП) деформированного тела (пружины) равна работе силы упругости при переходе тела (пружины) в состояние, в котором его деформация равна нулю.
    ЕП = ,
    где k — жесткость; х — деформация пружины.
    СИ: Дж
  • Закон сохранения полной механической энергии
    Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения или силами упругости, остается неизменной при любых движениях тел системы.
    ЕК2+ЕП2=ЕК1+ЕП1=const
    СИ: Дж
    Движение жидкостей и газов по трубам

  • Закон Бернулли Давление жидкости, текущей в трубе, больше в тех частях трубы, где скорость её движения меньше, и наоборот, в тех частях, где скорость больше, давление меньше.
    ,
    где p1, v1, h1 — давление, скорость и вертикальная координата жидкости в одном сечении трубы; p2, v2, h2 — давление, скорость и вертикальная координата жидкости в другом сечении трубы;
    ρ — плотность жидкости; g — ускорение свободного падения.
    СИ: Па

Источник: http://zadachi-po-fizike.electrichelp.ru/9-klass/

Ссылка на основную публикацию
Adblock
detector